摘要:
A process for dissolving used catalyst includes the steps of roasting, after subjecting to an optional deoiling treatment, the used catalyst at a temperature lower than 1,000.degree. C. but not lower than the temperature at which any of the residual components in the used catalyst undergoes ignition and combustion where the residual components are selected from the group consisting of oils, sulfur components, and carbon components; and dissolving the roasted product using sulfuric acid after adding a metal to the roasted product as a catalyst for accelerating dissolution. The process provides a simple and efficient method for completely dissolving a used catalyst having a carrier containing alumina as the principal component.
摘要:
Fission noble metals contained in an insoluble residue and/or a high-level radioactive liquid waste generated in the step of reprocessing spent nuclear fuels are dissolved in nitric acid to prepare a palladium-containing nitric acid solution, which is then brought into liquid-liquid contact with an extracting solvent containing a dialkyl sulfide in which each alkyl group has 4 to 10 carbon atoms as an extractant to extract the palladium component into the extracting solvent. The palladium-containing extracting solvent is brought into liquid-liquid contact with an aqueous thio compound solution or aqueous ammonia solution to strip the palladium component into the aqueous solution. A borohydride compound in added to the palladium-containing aqueous solution to precipitate palladium from this solution by reduction, and metallic palladium is recovered by separating the precipitate from the aqueous solution.
摘要:
In a process for converting UF.sub.6 into UO.sub.2, the UF.sub.6 is brought into contact with an aqueous aluminum nitrate solution. The resultant product is solvent extracted with tributyl phosphate to remove uranyl nitrate. The raffinate has a fluorine/aluminum (F/Al) weight ratio within the range of from about 0.5 to about 1.2. A sufficient quantity of hydrofluoric acid is added to the raffinate to minimize the solubility of aluminum fluoride (AlF.sub.3) therein and thereby maximize the precipitation potential of AlF.sub.3. Generally this occurs when sufficient hydrofluoric acid has been added to cause the F/Al weight ratio to be within the range of from about 1.8 to about 2.2. As a result of this treatment, the raffinate is divided into an uranium-containing aqueous solution and an AlF.sub.3 precipitate which contains substantially no uranium.