摘要:
In one embodiment, a first substrate includes a pixel electrode having a first main electrode in a belt-like shape extending along a first cross line direction which crosses at an acute angle in a counterclockwise direction with respect to an initial alignment direction of liquid crystal molecules, and a second main electrode in the belt-like shape extending along a second cross line direction which crosses at an acute angle in a clockwise direction with respect to the initial alignment direction of the liquid crystal molecules. A second substrate includes a counter electrode having a pair of third main electrodes in the belt-like shape arranged above a pair of regions sandwiching the first main electrode extending along a first cross line direction and a pair of fourth main electrodes in the belt-like shape arranged above a pair of regions sandwiching the second main electrode extending along the second cross line direction.
摘要:
In one embodiment, a liquid crystal display device includes a lens array unit having a cylindrical lens array constituted by a plurality of cylindrical lenses each having a lens surface and a generatrix corresponding to the lens surface. The lens surface is arranged in a line in a direction orthogonally crossing the generatrix. A first substrate is arranged at a back side of the lens array unit and includes a pixel electrode in a belt shape extending in a different direction from the direction in which the generatrix extends. The pixel electrode is formed in a V character shape. A second substrate is arranged between the lens array unit and the first substrate including a counter electrode in a belt shape commonly arranged on the pixel electrodes extending in a parallel direction to the pixel electrode.
摘要:
In one embodiment, a liquid crystal display device includes a lens array unit having a cylindrical lens array constituted by a plurality of cylindrical lenses each having a lens surface and a generatrix corresponding to the lens surface. The lens surface is arranged in a line in a direction orthogonally crossing the generatrix. A first substrate is arranged at a back side of the lens array unit and includes a pixel electrode in a belt shape extending in a different direction from the direction in which the generatrix extends. The pixel electrode is formed in a V character shape. A second substrate is arranged between the lens array unit and the first substrate including a counter electrode in a belt shape commonly arranged on the pixel electrodes extending in a parallel direction to the pixel electrode.
摘要:
In one embodiment, a liquid crystal display device comprises a pixel electrode including a first main electrode disposed between a first line and a second line and extending like a belt in a first extending direction. A first counter electrode includes a second main electrode extending like a belt in the first extending direction, a second counter electrode having a third main electrode extending like a belt in the first extending direction. The second and third main electrodes are disposed on both sides of the first main electrode, and an initial alignment direction of the liquid crystal molecules is parallel with a direction passing through an interstice between the first end side of the first main electrode and the second line, and through an interstice between the second end side of the first main electrode and the first line.
摘要:
In one embodiment, a liquid crystal display device comprises a pixel electrode including a first main electrode disposed between a first line and a second line and extending like a belt in a first extending direction. A first counter electrode includes a second main electrode extending like a belt in the first extending direction, a second counter electrode having a third main electrode extending like a belt in the first extending direction. The second and third main electrodes are disposed on both sides of the first main electrode, and an initial alignment direction of the liquid crystal molecules is parallel with a direction passing through an interstice between the first end side of the first main electrode and the second line, and through an interstice between the second end side of the first main electrode and the first line.
摘要:
In one embodiment, a first substrate is provided with first and second main pixel electrodes electrically connected each other extending along a first direction, respectively. A second substrate includes first to third main common electrodes electrically connected each other extending along the first direction, respectively. The first main pixel electrode is arranged between the first and second main common electrodes, and the second main pixel electrode is arranged between the second and third main common electrodes. Four inter-electrode distances are formed. One of the four inter-electrode distances is set to an optimal inter-electrode distance, and one of the four inter-electrode distances is different from at least one of the other three inter-electrode distances. Herein, the optimal inter-electrode distance is defined as follows: in a range of voltage which is applied between the electrodes, more than 90% of a peak transmissivity is obtained by the optimal inter-electrode distance.
摘要:
In one embodiment, a first substrate is provided with first and second main pixel electrodes electrically connected each other extending along a first direction, respectively. A second substrate includes first to third main common electrodes electrically connected each other extending along the first direction, respectively. The first main pixel electrode is arranged between the first and second main common electrodes, and the second main pixel electrode is arranged between the second and third main common electrodes. Four inter-electrode distances are formed. One of the four inter-electrode distances is set to an optimal inter-electrode distance, and one of the four inter-electrode distances is different from at least one of the other three inter-electrode distances. Herein, the optimal inter-electrode distance is defined as follows: in a range of voltage which is applied between the electrodes, more than 90% of a peak transmissivity is obtained by the optimal inter-electrode distance.
摘要:
According to one embodiment, a liquid crystal display includes a first substrate including a main pixel electrode, a second substrate including a main common electrode extending substantially in parallel to the main pixel electrode on both sides of the main pixel electrode, and a liquid crystal layer including liquid crystal molecules held between the first substrate and the second substrate. A horizontal inter-electrode distance in a first direction between the main pixel electrode and the main common electrode is in a range of 11 μm or more and 13 μm or less, and a dielectric constant anisotropy of the liquid crystal layer is 10 or more.
摘要:
According to one embodiment, a liquid crystal display includes a first substrate including main pixel electrodes, a second substrate including main common electrodes extending substantially in parallel to the main pixel electrodes and arranged on both sides of each of the main pixel electrodes as seen from above, and a liquid crystal layer including liquid crystal molecules held between the first substrate and the second substrate. A horizontal inter-electrode distance in a first direction between the main pixel electrode and the main common electrode is in a range of 11 μm or more and 13 μm or less, and a dielectric constant anisotropy of the liquid crystal layer is 10 or more and 16 or less.
摘要:
In one embodiment, a liquid crystal display device includes a first substrate and a second substrate. In the first substrate, gate lines extend in a first direction, and a first source line and a second source line extend in a second direction orthogonally crossing the first direction. A pixel electrode having a first belt-like main electrode is arranged approximately in a central portion between the first source line and the second source line and extending in the second direction. A first belt-like sub-electrode covers the gate line between the first source line and the second source line and extending in the first direction. The second substrate includes a counter electrode having a second main electrode arranged on the first and second source lines and extending in the second direction. A liquid crystal layer is held between the first substrate and the second substrate.