摘要:
A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
摘要:
A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
摘要:
A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
摘要:
A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
摘要:
A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
摘要:
A key for a musical instrument is provided for effectively giving a touch load to the key, while employing an alternative material having a specific gravity equal to or larger than a predetermined value, instead of lead, as a material for the weight, simplifying works involved in fixing the weight in a key body, and reducing the frequency of troubles such as cracking of the key body, thereby reducing the manufacturing cost. The key comprises a swingable key body formed with an embedding hole which extends through a front plate in the vertical direction to reach the key body, and a weight made of an alternative material other than lead. The weight has a smooth portion and a knurled portion on the outer peripheral surface thereof. The weight is press-fitted into the embedding hole from the smooth portion and thereby fixed in the key body.
摘要:
An optical transmitter-receiver according to the present invention is an optical transmitter-receiver connected to an optical fiber used for a single-core two-way optical communication channel for making a first optical signal S1 to be sent incident upon the end of the optical fiber and receiving a second optical signal S2 sent via the optical fiber. The above optical transmitter-receiver is provided with emission means for emitting a first optical signal S1, an optical system for making a first optical signal S1 from the emission means incident upon the incident end of the optical fiber in a direction R1 different from a direction in which a second optical signal S2 is outgoing from the end of the optical fiber and light receiving means for receiving a second optical signal S2 outgoing from the end of the optical fiber.
摘要:
A key for a musical instrument is provided for facilitating the attachment of a weight, and adjustments of a touch load, while using an alternative material for substitution for lead as a material for the weight. The key comprises a swingable key body formed with embedding holes, and weights each made of a material other than lead and having a threaded outer peripheral surface. The weight is screwed into the embedding hole for removable fit into the key body to give a load to the key body. A plurality of types of weights different in load from one another are provided for selecting one having an appropriate load therefrom to adjust the touch load.
摘要:
An optical fiber connecting method and apparatus in which optical communication is performed in a uni-core bidirectional system as optical crosstalk is prevented from occurring. To this end, an optical fiber connector 1 includes a refractive index matching member 2 and an optical fiber connecting unit 5. The refractive index matching member 2 has a refractive index substantially equivalent to that of the cores of optical fibers 101, 102. The optical fiber connecting unit 5 interconnects the optical fibers 101, 102 in a state in which end faces 101a, 102a of the optical fibers 101, 102 are contacted with a refractive index matching member 2 interposed between the end faces 101a, 102a of the optical fibers 101, 102.