摘要:
An optical modulator has, on a substrate having electro-optic effect, an optical waveguide including an input optical waveguide, two branching optical waveguides which branch a light beam incident to the input optical waveguide into two beams, two interaction optical waveguides which modulate a light beam phase by applying a voltage between a center electrode and ground electrodes, a multiplexing optical waveguide which multiplexes the light beams which propagate through the two interaction optical waveguides, and an output optical waveguide which is connected to the multiplexing optical waveguide through a multiplexing point. In the optical modulator, a high-order mode light beam which is generated by multiplexing the phase-modulated light beam and which is radiated from the multiplexing point to an inside of the substrate as two radiant light beams while the high-order mode light beam hardly propagates through the output optical waveguide, and at least one of the two radiant light beams is detected by a monitor photodetector. The output optical waveguide is formed while deformed in order to secure a space for mounting the monitor photodetector such that at least one of optical axes of the radiant light beams in a substrate end portion located on the output optical waveguide and an end of the output optical waveguide are separated from each other by a predetermined distance.
摘要:
An optical modulator has, on a substrate having electro-optic effect, an optical waveguide including an input optical waveguide, two branching optical waveguides which branch a light beam incident to the input optical waveguide into two beams, two interaction optical waveguides which modulate a light beam phase by applying a voltage between a center electrode and ground electrodes, a multiplexing optical waveguide which multiplexes the light beams which propagate through the two interaction optical waveguides, and an output optical waveguide which is connected to the multiplexing optical waveguide through a multiplexing point. In the optical modulator, a high-order mode light beam which is generated by multiplexing the phase-modulated light beam and which is radiated from the multiplexing point to an inside of the substrate as two radiant light beams while the high-order mode light beam hardly propagates through the output optical waveguide, and at least one of the two radiant light beams is detected by a monitor photodetector. The output optical waveguide is formed while deformed in order to secure a space for mounting the monitor photodetector such that at least one of optical axes of the radiant light beams in a substrate end portion located on the output optical waveguide and an end of the output optical waveguide are separated from each other by a predetermined distance.
摘要:
A waveguide type optical device has an optical waveguide formed on a substrate, functional optical waveguides provided to the optical waveguide, at least one of an optical input end face and an optical output end face for the optical waveguide which are provided to substrate end faces which are ends at longitudinal direction sides of the substrate, and at least one of an input optical waveguide connecting the optical input end face and the functional optical waveguides, and an output optical waveguide connecting the optical output end face and the functional optical waveguides. At least one of the input optical waveguide and the output optical waveguide is formed so as to form angles other than 0 with the functional optical waveguides at the at least one of the optical input end face and the optical output end face, and so as to make angles formed to the substrate end faces at the respective sides different from 90°.
摘要:
A waveguide type optical device has an optical waveguide formed on a substrate, functional optical waveguide an optical input end face and an optical output end face which are provided to respective substrate end faces an input optical waveguide connecting the optical input end face and the functional optical waveguides, an output optical waveguide connecting the optical output end face and the functional optical waveguides, and a signal light monomode optical fiber. The input optical waveguide and the output optical waveguide is formed so as to form angles other than 0° with the functional optical waveguides at the optical input end face and the optical output end face respectively, such that an angle between each of the input optical waveguide and the output optical waveguide with respect to a corresponding one of the substrate end faces is other than 90°.
摘要:
Herein disclosed is an optical modulator, having: a substrate (1); and a center and ground electrodes (4a to 4c), in which the substrate has ridge portions (8a to 8c), the center and ground electrodes are respectively formed above the ridge portions, the ridge portions below the center and ground electrodes respectively have top parts (10a, 10b) having a respective first and second end points (18, 19) separated with a distance of “WR”, the substrate has a bottom surface (21b) between the ridge portions having center and midway points (23, 24) positioned with a respective distance of WR/2 and WR/N ( 3 ≦N≦25 ) from the first end point, the ridge portion below the center electrode has a normal line (13), and the center point and the midway point define a straight line (25) crossed with the normal line at an angle larger or equal to 90.1°.
摘要:
An optical waveguide for guided an incident light is formed on a substrate having an electro-optic effect. A first buffer layer is formed to cover an upper surface of the substrate. A conductive film is formed above the first buffer layer. A center electrode and a ground electrode are formed for applying a voltage in order to induce an electric field in the optical waveguide. A second buffer layer is formed between the conductive film and at least one of the center electrode and the ground electrode. The conductive film is formed to be present on at least a part below the ground electrode. A light guided through the optical waveguide is modulated by changing a phase by a voltage applied to the optical waveguide. Thereby, a thermal drift can be effectively restricted so that an optical modulation device having excellent electric characteristics can be realized.
摘要:
Herein disclosed is an optical modulation device, comprising: a substrate 1 having a polarization non-reversal region 17a and a polarization reversal region 17b; an optical waveguide 18 including first and second branched optical waveguide portions 18a, 18b; and a traveling waveguide including a center electrode 19a and a ground electrode 19b, 19c to have an electric signal applied thereto, said traveling waveguide and said first and second branched optical waveguide portions collectively forming an interaction portion to have said incident light interacted with said electric signal, said interaction portion being constituted by a first interaction sub-portion 20a and a second interaction sub-portion 20b, said first and second interaction sub-portions being respectively positioned in regions of said substrate having opposite polarization orientations with each other, in which said center electrode is positioned in face to face relationship with one of said first and second branched optical waveguide portions at said first and second interaction sub-portion to ensure that said incident light in said first and second branched optical waveguide portions are phase modulated, and in which said interaction portion includes an optical waveguide shift sub-portion sandwiched between said first and second interaction sub-portions to have positions of said first and second branched optical waveguide portions shifted therein in a transverse direction, ensuring that positions of said first and second optical waveguides relative to said center and ground electrodes are interchanged between said first and second interaction sub-portions.
摘要:
In an optical modulator comprising substrate 1 having electro-optical effect, two optical waveguides 3a, 3b formed in the substrate, buffer layer 2 formed on the substrate, traveling-wave electrode 4 having center conductor 4a and ground conductors 4b, 4c above the buffer layer, and ridge sections formed with recessed sections 9a to 9c by carving at least a part of the substrate where an electrical field strength of high-frequency electrical signal propagating the traveling-wave electrode is strong, in which the ridge sections include center conductor ridge section 8a having the center conductor formed above and ground conductor ridge section 8b having the ground conductor formed above, and the center conductor ridge section has one of the two optical waveguides formed therein, the recessed sections are practically symmetrical to the center line between the two optical waveguides and the traveling-wave electrode is practically symmetrical to the center line of the center conductor.
摘要:
Herein disclosed is an optical modulator, having: a substrate (1); and a center and ground electrodes (4a to 4c), in which the substrate has ridge portions (8a to 8c), the center and ground electrodes are respectively formed above the ridge portions, the ridge portions below the center and ground electrodes respectively have top parts (10a, 10b) having a respective first and second end points (18, 19) separated with a distance of “WR”, the substrate has a bottom surface (21b) between the ridge portions having center and midway points (23, 24) positioned with a respective distance of WR/2 and WR/N (3≦N≦25) from the first end point, the ridge portion below the center electrode has a normal line (13), and the center point and the midway point define a straight line (25) crossed with the normal line at an angle larger or equal to 90.1°.
摘要:
An optical modulator, including: a substrate; an optical waveguide embedded in the substrate; a traveling wave electrode mounted on the substrate and having a traveling wave applied thereon so that a light wave is modulated by the traveling wave with an electro-optic effect. The traveling wave electrode includes a center electrode and ground electrodes; in which the optical waveguide has a plurality of interaction optical waveguides that form a Mach-Zehnder optical waveguide that modulates the light wave in a phase modulation manner when the traveling wave is applied to the traveling wave electrode, the interaction optical waveguides form a region where respective widths of the interaction optical waveguides are different from each other, and the center electrode and the ground electrodes are positioned such that interaction efficiencies between the high frequency electric signal and the light wave guided in the respective interaction optical waveguides are substantially equal to each other.