摘要:
A repeater is configured to selectively generate and transmit control message packets between wireless stations on both a transmit side and a receive side of the repeater. The repeater manages and manipulates an end to end protocol of the control message packets in a manner that does not change media access control (MAC) addresses of the end to end protocol so as to achieve a network objective, such as preventing other transmitters from transmitting while the repeater repeats a signal from its receive side to its transmit side. The control message management is applicable to analog signal repeaters as well as digital repeaters, such as symbol to symbol or packet to packet repeaters, in which physical layer control message management is performed.
摘要:
A physical layer frequency translating repeater (600, 700) for use in a wireless network includes signal processor (710-714) coupled with a signal processing bus (711), a processor (627) and a memory (650). The physical layer repeater conducts physical layer repeating and selectively conducts layer 2 and possibly layer 3 functions depending on network conditions and other factors. A demodulator (623) can extract address information such as media access control (MAC) addressing to enable packets to be redirected, terminated, stored and forwarded, if necessary, based on network conditions.
摘要:
A discrete time bandpass filter element (103) having multiple stages (201, 202, 203, 204, 205) for use in a time division duplex radio protocol communications system including an automatic gain control. Discrete time bandpass filter is used to generate delay and can replace SAW filters in a wireless frequency translating repeater.
摘要:
A physical layer frequency translating repeater for use in a wireless network can include a baseband section with demodulator, a processor and a memory. A portion of a packet for repeating can be processed during a physical layer repeating operation and a higher layer function performed without modification of an address. A received signal can be processed on a symbol-by-symbol basis in a first symbol interval, and regenerated after at least a second symbol interval and prior to completion of the demodulating the received signal. A hybrid network device can include a network node portion and a physical layer repeater portion.
摘要:
A wireless communication system including a receiver adapted to receive data at 10 Mbps or greater is described. The received signals are preferably binary (BFSK) and/or quaternary (QFSK) shift keying signals limited to a bandwidth of less than or equal to 5 MHz. The receiver includes a demodulator capable of operating in a multipath environment. In one embodiment, a frequency-hopping wireless communication system is used and the bandwidth limitations concern the bandwidth at each hop.
摘要:
Motion status states reported by an advanced motion detection process or other means of obtaining a movement state of Stationary or Non-Stationary from filtered accelerometer data are utilized to reacquire service during Out of Service scenarios. Both movement states operate in three power phases: aggressive scanning or normal power mode, slow scanning or moderate power mode, and deep sleep or power saving mode. The scanning rate, power mode, scanning period and/or channel list depend upon the movement state and power phase. Motion information obtained from an advanced motion detection process provides substantial improvements in service reacquisition performance and power consumption in stationary Out of Service scenarios. When compared to traditional service reacquisition scanning routines, the reductions in average current can be achieved of: at a 5-minute OOS mark, ˜45% reduction, at a 15-minute OOS mark, ˜60% reduction and at a 6-hour OOS mark, ˜50% reduction.
摘要:
Advanced Motion Detection in Wireless Communication Systems processes accelerometer or other sensor input data to distinguish between random in-place movements and actual start of motion that could produce a change in the user's location by filtering unsustained random motion. Random in-place motion such as table banging, knee jiggling, vibration, etc. are filtered out from Stationary and Non-Stationary motion state determinations. The process utilizes data from motion sensors or any accelerometer standard in all smart mobile devices and any mobile device that has automatic portrait-landscape switching (screen rotation). A state machine processes sensor or other input to produce a filtered Stationary or Non-Stationary output movement state unaffected by transient motion or rest periods. A sensor processing subsystem (SPS), or other low power processor for processing sensor or other input may be implemented to reduce power consumption and processing overhead while, for example, a modem processor or other high power processor is in a sleep mode.