Abstract:
Disclosed are new high frequency ion implanted passivated semiconductor devices and a planar fabrication process therefor wherein initially an ion implantation and PN junction passivation mask is formed on one surface of a semiconductor crystal. Thereafter, one or more conductivity type determining ion species are implanted through an opening in the mask and into the semiconductor crystal to form active device regions including a PN junction, all of which are bounded by an annular, higher resistivity unimplanted region of the semiconductor crystal. The PN junction thus formed terminates beneath the implantation and passivation mask, and the semiconductor crystal is then annealed to remove ion implantation damage and to electrically activate the ion implanted regions, while simultaneously controlling the lateral movement of the PN junction beneath the passivation mask. Such annealing does not adversely affect the conductivity and passivation characteristics of either the higher resistivity annular region or the passivation mask, and the resultant device structure exhibits a small degradation in high frequency performance relative to comparable state of the art unpassivated devices. Devices fabricated with the present new passivated geometry have a structure with sufficient mechanical strength to allow direct mounting into high frequency circuits (of the microwave waveguide-cavity type) without the use of additional package arrangements.
Abstract:
The specification describes new high frequency ion implanted semiconductor devices, novel microwave integrated circuits employing same, and a planar fabrication process for both wherein initially an ion implantation and PN junction passivation mask is formed on one surface of a semiconductor substrate. Next a heavily doped buried region is ion implanted through an opening in the mask and into the substrate to a preselected controlled depth. Thereafter, one or more additional ion implants are made through the mask opening to complete the active device regions and a PN junction therebetween, all of which are bounded by an annular, higher resistivity unimplanted region of the semiconductor substrate. The PN junction thus formed terminates beneath the implantation and passivation mask, and the semiconductor substrate is then annealed to remove ion implantation damage and to electrically activate the ion implanted regions, while simultaneously controlling the lateral movement of the PN junction beneath the passivation mask. Such annealing does not adversely affect the conductivity and passivation characteristics of either the higher resistivity region or the passivation mask. Openings to the heavily doped buried regions in the substrate are made both opposite and coaxial to the openings in the passivation mask. Precision in the area and depth of these contact openings is achieved by use of a chemical etchant that is preferential to the substrate crystallographic orientation and the impurity concentration levels. Ohmic contact metallization is deposited into the contact openings after which the heat sink metallization is applied to either or both of the metallized contact regions.
Abstract:
The specification describes new high frequency ion implanted semiconductor devices, novel microwave integrated circuits employing same, and a planar fabrication process for both wherein initially an ion implantation and PN junction passivation mask is formed on one surface of a semiconductor substrate. Next, a heavily doped buried region is ion implanted through an opening in the mask and into the substrate to a preselected controlled depth. Thereafter, one or more additional ion implants are made through the mask opening to complete the active device regions and a PN junction therebetween, all of which are bounded by an annular, higher resistivity unimplanted region of the semiconductor substrate. The PN junction thus formed terminates beneath the implantation and passivation mask, and the semiconductor substrate is then annealed to remove ion implantation damage and to electrically activate the ion implanted regions, while simultaneously controlling the lateral movement of the PN junction beneath the passivation mask. Such annealing does not adversely affect the conductivity and passivation characteristics of either the higher resistivity region or the passivation mask. Openings to the heavily doped buried regions in the substrate are made both opposite and coaxial to the openings in the passivation mask. Precision in the area and depth of these contact openings is achieved by use of a chemical etchant that is preferential to the substrate crystallographic orientation and the impurity concentration levels. Ohmic contact metallization is deposited into the contact openings after which the heat sink metallization is applied to either or both of the metallized contact regions. A mesa is formed to provide discrete structures with the implanted device region surrounded by a ring of high-resistivity semiconductor and thick low-loss dielectric. The resultant device structure exhibits a small degradation in high frequency performance relative to comparable state of the art unpassivated devices.
Abstract:
Disclosed is a millimeter wave waveguide structure adapted for operation with negative resistance devices, such as solid state avalanche breakdown diodes, at frequencies up to about 170 GHz or higher. A central portion of the structure is formed by a cylindrical metallic impedance transformer and bias pin which has a major face thereof substantially parallel to a common lower waveguide wall of the structure. A negative resistance device is DC coupled between this common waveguide wall and one edge of the impedance transformer, so that the impedance transformer also provides the required DC bias to the negative resistance device. Other portions of the waveguide structure include a first upper waveguide wall, immediately adjacent one side of the impedance transformer, and this wall, together with the common lower waveguide wall, forms a tuning cavity into which a sliding tuning short is positioned. Another portion of the waveguide structure includes a second, upper waveguide wall immediately adjacent the opposite side of the impedance transformer, and this wall together with the common lower waveguide wall, confines millimeter wave power from the negative resistance device to a predetermined path and direction. Suitable waveguide transition means are coupled to the second upper waveguide wall for coupling the above structure to a full height waveguide.