摘要:
A method of operating a fuel system is provided. The method includes removing fuel from at least a portion of the fuel system using a gravity drain process. The method also includes channeling nitrogen into at least a portion of the fuel system to facilitate removing air and residual fuel from at least a portion of the fuel system, thereby mitigating a formation of carbonaceous precipitate particulates. The method further includes removing air and nitrogen from at least a portion of the fuel system during a fuel refilling process using a venting process such that at least a portion of the fuel system is substantially refilled with fuel and substantially evacuated of air and nitrogen. The method also includes removing air from at least a portion of the refilled fuel system using a venting process. The method further includes recirculating fuel within at least a portion of the fuel system, thereby removing heat from at least a portion of the fuel system and facilitating a transfer of operating fuel modes.
摘要:
A method of operating a fuel system is provided. The method includes removing fuel from at least a portion of the fuel system using a gravity drain process. The method also includes channeling nitrogen into at least a portion of the fuel system to facilitate removing air and residual fuel from at least a portion of the fuel system, thereby mitigating a formation of carbonaceous precipitate particulates. The method further includes removing air and nitrogen from at least a portion of the fuel system during a fuel refilling process using a venting process such that at least a portion of the fuel system is substantially refilled with fuel and substantially evacuated of air and nitrogen. The method also includes removing air from at least a portion of the refilled fuel system using a venting process. The method further includes recirculating fuel within at least a portion of the fuel system, thereby removing heat from at least a portion of the fuel system and facilitating a transfer of operating fuel modes.
摘要:
A method of operating a fuel system is provided. The method includes removing fuel from at least a portion of the fuel system using a gravity drain process. The method also includes channeling nitrogen into at least a portion of the fuel system to facilitate removing air and residual fuel from at least a portion of the fuel system, thereby mitigating a formation of carbonaceous precipitate particulates. The method further includes removing air and nitrogen from at least a portion of the fuel system during a fuel refilling process using a venting process such that at least a portion of the fuel system is substantially refilled with fuel and substantially evacuated of air and nitrogen. The method also includes removing air from at least a portion of the refilled fuel system using a venting process. The method further includes recirculating fuel within at least a portion of the fuel system, thereby removing heat from at least a portion of the fuel system and facilitating a transfer of operating fuel modes.
摘要:
A method of operating a fuel system is provided. The method includes removing fuel from at least a portion of the fuel system using a gravity drain process. The method also includes channeling nitrogen into at least a portion of the fuel system to facilitate removing air and residual fuel from at least a portion of the fuel system, thereby mitigating a formation of carbonaceous precipitate particulates. The method further includes removing air and nitrogen from at least a portion of the fuel system during a fuel refilling process using a venting process, such that at least a portion of the fuel system is substantially refilled with fuel and substantially evacuated of air and nitrogen. The method also includes removing air from at least a portion of the refilled fuel system using a venting process.
摘要:
An optical transmission network comprises a multi-wavelength source (7) shared between multiple sets of client side equipment for manipulating electrical signals. A first wavelength selective routing element (5) is connected to the multi-wavelength source (7). Each set of client-side equipment (1) comprises an optical modulator (3) connected to the first wavelength selective routing element (5) and an optical receiver (2). A second wavelength selective routing element (6) is connected to the optical receiver (2) and is operative to direct incoming signals from one or more remote locations to the optical receiver (2). The network provides a WDM architecture solution for networks whereby the cost of implementing and running client side equipment (1) is reduced by not having the WDM source (7) within the client side equipment (1).
摘要:
A winder assembly is provided for rotating a component of a can necking machine to a desired angular position suitable for performing maintenance on the component. The winder assembly includes a shaft coupled to a motor of that drives the components of the can necking machine during operation. A handle can be removably connected to the shaft, such that rotation of the handle in a rotational direction correspondingly causes the shaft to rotate. The shaft causes the motor to rotate, which drives a gear train that rotates the components of the necking machine that are coupled to the gear train.
摘要:
A first embodiment can be a device comprising a means to reduce SLOSH energy absorption in a fluid containing organism by reducing the flow of one or more outflow vessels of the cranium by compressing said vessels.
摘要:
A method for generating an optical single sideband signal comprising the steps of splitting an optical field into two parts and introducing a relative phase delay of +/−π/4 radians in each direction of transmission to one of the parts, intensity reflection-modulating each part with electrical signals having a relative phase delay of +/−π/2 radians and then recombining the reflection-modulated signals.
摘要:
A first embodiment can be a method to reduce SLOSH energy absorption within an organism by reducing the inelastic collisions. A fluid containing organism can utilize an embodiment of the method wherein one or more of reversibly increasing pressure within the organs or cells, reversibly increasing the volume within the organs or cells, reversibly altering vascular, molecular, or cell wall stiffness, or reversibly altering vascular, molecular, or cell wall configuration within said organism may reduce these collisions.
摘要:
An optical fibre network comprises a laser source (1a) configured to generate laser light of a plurality of wavelengths. A first optical fibre (4a), transmits multi-wavelength light from the laser source to a location remote from the laser source. A wavelength division multiplexer (2) at the remote location (203) is connected to a plurality of second optical fibres (8). A plurality of optical modulators (9) are each connected optically to the wavelength division multiplexer (2) via a respective second optical fibre (8). The wavelength division multiplexer (2) is arranged to de-multiplex the multi-wavelength light received from the first optical fibre (4a) into a plurality of wavelengths and to supply a respective wavelength to each of the second optical fibres (8). The optical modulators (9) are reflective optical modulators each arranged to modulate light received from the associated second optical fibre (8) with a data signal and to reflect the modulated light back along the second optical fibre (8). The wavelength division multiplexer (2) is arranged to multiplex the modulated light from all of the second optical fibres (8) into a wavelength division multiplexed optical signal for onward transmission along a third optical fibre (13).