摘要:
The present invention relates to negative-electrode active material for a lithium secondary battery exhibiting excellent capacity property and cycle life property, a method of preparing the same, and a lithium secondary battery using the negative-electrode active material, wherein the negative-electrode active material for a lithium secondary battery comprises a nanotube having a tube shape defined by an outer wall with a thickness of nanoscale, the outer wall of the nanotube comprises at least one non-carbonaceous material selected from the group consisting of silicon, germanium and antimony, and an amorphous carbon layer with a thickness of 5 nm or less is formed on the outer wall of the nanotube.
摘要:
The present invention relates to negative-electrode active material for a lithium secondary battery exhibiting excellent capacity property and cycle life property, a method of preparing the same, and a lithium secondary battery using the negative-electrode active material, wherein the negative-electrode active material for a lithium secondary battery comprises a nanotube having a tube shape defined by an outer wall with a thickness of nanoscale, the outer wall of the nanotube comprises at least one non-carbonaceous material selected from the group consisting of silicon, germanium and antimony, and an amorphous carbon layer with a thickness of 5 nm or less is formed on the outer wall of the nanotube.
摘要:
The present invention provides a method of preparing a negative active material for a rechargeable lithium battery, comprising the steps of: mixing a silicon precursor, a surfactant comprising an ammonium halide salt having a organic group, an initiator, and a solvent; heat-treating the mixture; cooling the heat-treated mixture to room temperature; washing the cooled, heat treated mixture; and calcining the washed product.
摘要:
The present invention provides a method of preparing a negative active material for a rechargeable lithium battery, comprising the steps of: mixing a silicon precursor, a surfactant comprising an ammonium halide salt having a organic group, an initiator, and a solvent; heat-treating the mixture; cooling the heat-treated mixture to room temperature; washing the cooled, heat treated mixture; and calcining the washed product.
摘要:
The present invention relates to negative-electrode active material for rechargeable lithium battery comprising: a core comprising material capable of doping and dedoping lithium; and, a carbon layer formed on the surface of the core, wherein the carbon layer has a three dimensional porous structure comprising nanopores regularly ordered on the carbon layer with a pore wall of specific thickness placed therebetween.
摘要:
The present invention relates to negative-electrode active material for rechargeable lithium battery comprising: a core comprising material capable of doping and dedoping lithium; and, a carbon layer formed on the surface of the core, wherein the carbon layer has a three dimensional porous structure comprising nanopores regularly ordered on the carbon layer with a pore wall of specific thickness placed therebetween.
摘要:
Disclosed is a separator. The separator includes a planar non-woven fabric substrate having a plurality of pores, and a porous coating layer formed on at least one surface of the non-woven fabric substrate. The porous coating layer is composed of a mixture of filler particles and a binder polymer. The filler particles include conductive positive temperature coefficient (PTC) particles composed of a mixture of conductive particles and a low melting point resin having a melting point lower than that of the non-woven fabric substrate. Due to the presence of the conductive PTC particles, the porous coating layer can be imparted with a shutdown function against thermal runaway. In addition, the porous coating layer exhibits appropriate electrical conductivity. Therefore, the separator is suitable for use in a high-capacity electrochemical device.
摘要:
Disclosed are a separator for a battery, which comprises a gel polymer layer formed on a substrate, the gel polymer layer including a plurality of three-dimensional open pores interconnected with each other, and an electrochemical device comprising the same separator. Also, disclosed is a method for preparing the gel polymer layer including a plurality of three-dimensional open pores interconnected with each other on a substrate.
摘要:
Disclosed is a separator. The separator includes a planar non-woven fabric substrate having a plurality of pores, and a porous coating layer formed on at least one surface of the non-woven fabric substrate. The porous coating layer is composed of a mixture of filler particles and a binder polymer. The filler particles include conductive positive temperature coefficient (PTC) particles composed of a mixture of conductive particles and a low melting point resin having a melting point lower than that of the non-woven fabric substrate. Due to the presence of the conductive PTC particles, the porous coating layer can be imparted with a shutdown function against thermal runaway. In addition, the porous coating layer exhibits appropriate electrical conductivity. Therefore, the separator is suitable for use in a high-capacity electrochemical device.
摘要:
Disclosed are a separator for a battery, which comprises a gel polymer layer formed on a substrate, the gel polymer layer including a plurality of three-dimensional open pores interconnected with each other, and an electrochemical device comprising the same separator. Also, disclosed is a method for preparing the gel polymer layer including a plurality of three-dimensional open pores interconnected with each other on a substrate.