摘要:
Disclosed are a porous electroformed shell for forming a grain pattern and a manufacturing method thereof. The method includes the step of causing an epoxy mandrel to be conductive by formation of a conductive thin film thereon; transferring a non-conductive masking pattern on the conductive thin film by using a masking film; generating and growing a fine pore at the position of the non-conductive masking pattern through electroforming; and demolding an electrodeposited layer having the fine pore from the epoxy mandrel, Through the disclosed method, precise control, both as a whole or in part, on a diameter, a formation position, and a density of a fine pore can be simply, economically, and efficiently can be carried out according to various curved shapes of the electroformed shell. Accordingly, in forming the surface of a high-quality surface skin material or a plastic molded product with a predetermined pattern, when the fine pore is used as a decompression suction hole or an air vent, a predetermined pattern can be efficiently and economically obtained in such a manner that it has a regular position, a regular directionality, sharp radii, and minimized deformation.
摘要:
Disclosed are a porous electroformed shell for forming a grain pattern and a manufacturing method thereof. The method includes the step of causing an epoxy mandrel to be conductive by formation of a conductive thin film thereon; transferring a non-conductive masking pattern on the conductive thin film by using a masking film; generating and growing a fine pore at the position of the non-conductive masking pattern through electroforming; and demolding an electrodeposited layer having the fine pore from the epoxy mandrel, Through the disclosed method, precise control, both as a whole or in part, on a diameter, a formation position, and a density of a fine pore can be simply, economically, and efficiently can be carried out according to various curved shapes of the electroformed shell. Accordingly, in forming the surface of a high-quality surface skin material or a plastic molded product with a predetermined pattern, when the fine pore is used as a decompression suction hole or an air vent, a predetermined pattern can be efficiently and economically obtained in such a manner that it has a regular position, a regular directionality, sharp radii, and minimized deformation.
摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.
摘要:
Fabrication and arrangement of nanoparticles into one-dimensional linear chains is achieved by successive chemical reactions, each reaction adding one or more nanoparticles by building onto exposed, unprotected linker functionalities. Optionally, protecting groups may be used to control and organize growth. Nanoparticle spheres are functionalized in a controlled manner in order to enable covalent linkages. Functionalization of nanoparticles is accomplished by either ligand exchange or chemical modification of the terminal functional groups of the capping ligand. Nanoparticle chains are obtained by a variety of connectivity modes such as direct coupling, use of linker molecules, and use of linear polymeric templates. In particular, a versatile building block system is obtained through controlled monofunctionalization of nanoparticles.