Abstract:
A tube bending die rotates to cause the tube to be bent over the outer periphery of the die and uses a drive which includes a transducer for measurement of the bending moment required for bending the tube. The bending moment signal is used in conjunction with a signal indicating the total amount of bend to control the number of degrees of bending and to overbend the tube an amount which is a function of the bending moment required to bend the tube, to compensate for springback. In its simplest form, the bending die is a rotating element, and the drive for rotating the die can include a force measuring link which can be converted into bending moment required for bending is used as a measured parameter for an equation which provides a signal indicating the amount of angular overbending needed to compensate for springback in an online, real time process.
Abstract:
A thin film acoustic transducer is formed with an electrically actuatable substantially transparent thin film. Substantially transparent conductive thin films are supported on both sides of the electrically actuatable substantially transparent thin film. The thin film transducer may be used to sense sound, or produce sound in various embodiments. In further embodiments, the film may be attached to a window, and operate as a speaker for an audio system, or may provide noise cancellation functions. In further embodiments, the film may be attached to a computer monitor, touch panel, poster, or other surface, and operate as a speaker. A method of forming carbon nanotube thin films uses a layer by layer assembly technique and a positively charged hydrophilic layer on a thin film substrate.
Abstract:
An electronic adaptive control system for use with hydraulic press brakes to provide compensation for material spring back to accurately produce a desired bend angle in the work piece with a single ram stroke. Fixed input parameters associated with the press brake and material properties, together with ram position and force data are continuously input to a digital computer which calculates the precise point of punch penetration necessary to reverse ram movement in order to produce the desired bend angle in the work piece. By using in-process measurements, a significant savings in machine set-up-time can be achieved in order to produce an accurate bend angle in the work piece the first time and every time.