摘要:
The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H2S.
摘要:
The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H2S.
摘要:
Embodiments of the present disclosure describe a method of fabricating a semiconducting material, comprising fixing a first substrate to a second substrate via a bonding material sufficient to form a two-substrate support with a cavity region, applying an organo-lead halide perovskite precursor solution to the cavity region of the two-substrate support, and annealing sufficient to form in the cavity region a semiconducting material including an organo-lead halide perovskite thin single crystal. Embodiments of the present disclosure further describe a transistor comprising a source terminal, a drain terminal, a channel layer extending between the source terminal and the drain terminal and including an organo-lead halide perovskite thin single crystal, a gate terminal, and an insulating layer separating the gate terminal from the source terminal, drain terminal, and channel layer sufficient to form a transistor.