Abstract:
A high strength cold-rolled steel sheet has a component composition containing specific amounts of C, Si, Mn, P, S, N and Al, respectively with a remainder being iron and inevitable impurities. The steel sheet contains 95% or more of martensite in terms of area ratio, and contains 5% or less (inclusive of 0%) of residual austenite and ferrite in terms of a total area ratio. An average size of a carbide is 60 nm or less in terms of an equivalent circle diameter, and a number density of the carbide having the equivalent circle diameter of 25 nm or more is 5.0×105 pieces or less per mm2. The steel sheet has a yield strength of 1,180 MPa or more and a tensile strength of 1,470 MPa or more.
Abstract:
A hot-dip galvanized steel sheet contains specific amounts of C, Si, Mn, P, S, Ti, Al, and N with the remainder being iron and unavoidable impurities. Bainitic ferrite, martensite, retained γ, and ferrite (α) are present each in a specific area ratio. The remainder γ has a specific C concentration. Sub-grains in the recrystallized α and un-recrystallized α have a specific grain diameter. The surface area ratio of α and worked α having a grain diameter of 5 μm or more is 5% or less. The average particle diameter of TiC particles inside a grains is 10 nm or less.
Abstract:
This high-strength steel sheet contains, in mass %, 0.05 to 0.3% of C, 1 to 3% of Si, 0.5 to 3% of Mn, up to 0.1% (inclusive of 0%) of P, up to 0.01% (inclusive of 0%) of S, 0.001 to 0.1% of Al and 0.002 to 0.03% of N with the balance consisting of iron and unavoidable impurities, and has a microstructure which comprises, in area fraction relative to the microstructure, 40 to 85% of bainitic ferrite, 5 to 20% of retained austenite (γR), 10 to 50% (in total) of martensite and γR, and 5 to 40% of ferrite. The retained austenite (γR) has a C concentration of 0.5 to 1.0 mass %, while the quantity of γR present in the ferrite grains is 1% or more (in area fraction) relative to the microstructure.
Abstract:
A hot-dip galvanized steel sheet contains specific amounts of C, Si, Mn, P, S, Ti, Al, and N with the remainder being iron and unavoidable impurities. Bainitic ferrite, martensite, retained γ, and ferrite (α) are present each in a specific area ratio. The remainder γ has a specific C concentration. Sub-grains in the recrystallized α and un-recrystallized α have a specific grain diameter. The surface area ratio of α and worked α having a grain diameter of 5 μm or more is 5% or less. The average particle diameter of TiC particles inside α grains is 10 nm or less.
Abstract:
This high-strength steel sheet contains, in mass %, 0.05 to 0.3% of C, 1 to 3% of Si, 0.5 to 3% of Mn, up to 0.1% (inclusive of 0%) of P, up to 0.01% (inclusive of 0%) of S, 0.001 to 0.1% of Al and 0.002 to 0.03% of N with the balance consisting of iron and unavoidable impurities, and has a microstructure which comprises, in area fraction relative to the microstructure, 40 to 85% of bainitic ferrite, 5 to 20% of retained austenite (γR), 10 to 50% (in total) of martensite and γR, and 5 to 40% of ferrite. The retained austenite (γR) has a C concentration of 0.5 to 1.0 mass %, while the quantity of γR present in the ferrite grains is 1% or more (in area fraction) relative to the microstructure.