摘要:
A first shield portion located below an MR stack includes a first main shield layer, a first antiferromagnetic layer, and a first magnetization controlling layer including a first ferromagnetic layer exchange-coupled to the first antiferromagnetic layer. A second shield portion located on the MR stack includes a second main shield layer, a second antiferromagnetic layer, and a second magnetization controlling layer including a second ferromagnetic layer exchange-coupled to the second antiferromagnetic layer. The MR stack includes two free layers magnetically coupled to the two magnetization controlling layers. Only one of the two magnetization controlling layers includes a third ferromagnetic layer that is antiferromagnetically exchange-coupled to the first or second ferromagnetic layer through a nonmagnetic middle layer. The first shield portion includes an underlayer disposed on the first main shield layer, and the first antiferromagnetic layer is disposed on the underlayer.
摘要:
A magnetoresistive device with CPP structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer and a magnetization direction control area that extends further rearward from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer to produce magnetizations of the said first and second ferromagnetic layers which are antiparallel with each other; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions.
摘要:
The invention provides a magnetoresistive device of the CPP (current perpendicular to plane) structure, comprising a magnetoresistive unit, and a first, substantially soft magnetic shield layer positioned below and a second, substantially soft magnetic shield layer positioned above, which are located and formed such that the magnetoresistive effect is sandwiched between them from above and below, with a sense current applied in the stacking direction. The magnetoresistive unit comprises a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that said nonmagnetic intermediate layer is sandwiched between them. At least one of the first shield layer positioned below and the second shield layer positioned above is configured in a framework form having a planar shape (X-Y plane) defined by the width and length directions of the device. The framework has a front frame-constituting portion located on a medium opposite plane side in front and near where the magnetoresistive unit is positioned, and any other frame portion. The any other frame portion partially comprises a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer. The bias magnetic field-applying layer is constructed by repeating the stacking of a multilayer unit at least twice or up to 50 times, wherein the multilayer unit comprises a nonmagnetic underlay layer and a high-coercive material layer. The nonmagnetic gap layer is designed and located such that a magnetic flux given out of the bias magnetic field-applying layer is efficiently sent out to the front frame-constituting portion. The combination of the nonmagnetic gap layer with the bias magnetic field-applying layer forms a closed magnetic path with a magnetic flux going all the way around the framework, and turns the magnetization of the front frame-constituting portion into a single domain. It is thus possible to make the domain control of the shield layers much more stable, achieve remarkable improvements in resistance to an external magnetic field, and make the operation of the device much more reliable.
摘要:
A magnetoresistive effect element is structured in the manner that the antiferromagnetic layer interposed between the upper and lower shields is eliminated and the antiferromagnetic layer is positioned in a so-called shield layer. Therefore, it is realized to solve a pin reversal problem and to allow narrower tracks and narrower read gaps.
摘要:
A magnetoresistive effect element is structured in the manner that the antiferromagnetic layer interposed between the upper and lower shields is eliminated and the antiferromagnetic layer is positioned in a so-called shield layer. Therefore, it is realized to solve a pin reversal problem and to allow narrower tracks and narrower read gaps.
摘要:
The invention provides a magnetoresistive device with the CPP (current perpendicular to plane) structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, with a sense current applied in the stacking direction, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer near a medium opposite plane and a magnetization direction control area that extends further rearward (toward the depth side) from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer in such a way that the magnetizations of the said first and second ferromagnetic layers are antiparallel with each other along the width direction axis; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions. It is thus possible to obtain a magnetoresistive device that, while the magnetization directions of two magnetic layers (free layers) stay stabilized, can have high reliability, and can improve linear recording densities by the adoption of a structure capable of narrowing the read gap (the gap between the upper and lower shields) thereby meeting recent demands for ultra-high recording densities.
摘要:
A thermally-assisted magnetic head that includes an air bearing surface facing a recording medium and that performs magnetic recording while heating the recording medium includes: a magnetic recording element including a pole of which one edge part is positioned on the air bearing surface and that generates magnetic flux traveling toward the magnetic recording medium; a waveguide configured with a core through which light propagates and a cladding, at least one part of which extends to the air bearing surface, surrounding the periphery of the core; a plasmon generator that faces a part of the core and that extends to the air bearing surface. The plasmon generator is configured with a first part and a second part that are joined; the first part that is positioned on the air bearing surface side and that is made of a high melting point material, and the second part that is positioned away from the air bearing surface and that is made of a material with a small value ∈″, which is an imaginary component of permittivity.
摘要:
A plasmon generator has an outer surface including a plasmon exciting part, and has a near-field light generating part located in a medium facing surface. The plasmon exciting part faces an evanescent light generating surface of a waveguide's core with a predetermined distance therebetween. The outer surface of the plasmon generator further includes first and second inclined surfaces that are each connected to the plasmon exciting part. The first and second inclined surfaces increase in distance from each other with increasing distance from the plasmon exciting part. The plasmon generator includes a shape changing portion where the angle of inclination of each of the first and second inclined surfaces with respect to the evanescent light generating surface increases continuously with decreasing distance to the medium facing surface.
摘要:
The invention provides a magnetoresistive device with the CPP (current perpendicular to plane) structure, comprising a magnetoresistive unit, and a first shield layer and a second shield layer located and formed such that the magnetoresistive unit is sandwiched between them, with a sense current applied in a stacking direction, wherein the magnetoresistive unit comprises a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed such that the nonmagnetic intermediate layer is interposed between them, wherein the first shield layer, and the second shield layer is controlled by magnetization direction control means in terms of magnetization direction, and the first ferromagnetic layer, and the second ferromagnetic layer receives action such that there is an antiparallel magnetization state created, in which mutual magnetizations are in opposite directions, under the influences of magnetic actions of the first shield layer and the second shield layer.
摘要:
A magnetoresistive device of a CPP (current perpendicular to plane) structure includes a magnetoresistive unit sandwiched between a first substantially soft magnetic shield layer from below, and a second substantially soft magnetic shield layer from above, with a sense current applied in a stacking direction. The magnetoresistive unit includes a non-magnetic intermediate layer sandwiched between a first ferromagnetic layer, and a second ferromagnetic layer. At least one of the first and second shield layers is configured in a window frame of a planar shape, including a front frame-constituting portion and a back frame-constituting portion partially comprising a combination of a nonmagnetic gap layer with a bias magnetic field-applying layer. The combination of the nonmagnetic gap layer with the bias magnetic field-applying layer forms a closed magnetic path with magnetic flux going all the way around the window framework, turning the magnetization of the front frame-constituting portion into a single domain.