摘要:
A magnetoresistive (MR) sensor including a synthetic antiferromagnetic (SAF) structure that is magnetically coupled to a side shield element. The SAF structure includes at least one magnetic amorphous layer that is an alloy of a ferromagnetic material and a refractory material. The amorphous magnetic layer may be in contact with a non-magnetic layer and antiferromagnetically coupled to a layer in contact with an opposite surface of the non-magnetic layer.
摘要:
Implementations disclosed herein provide for a magnetoresistive (MR) sensor including a synthetic antiferromagnetic (SAF) structure that is magnetically coupled to a side shield element. The SAF structure includes at least one magnetic amorphous layer that is an alloy of a ferromagnetic material and a refractory material. The amorphous magnetic layer may be in contact with a non-magnetic layer and antiferromagnetically coupled to a layer in contact with an opposite surface of the non-magnetic layer.
摘要:
According to one embodiment, a magneto-resistance effect element includes: a first shield; a second shield; a first side shield layer; a second side shield layer; a stacked body; a first shield guide layer; and a second shield guide layer. The first shield guide layer includes a fifth magnetic layer provided between the first side shield layer and the stacked body. The second shield guide layer includes a sixth magnetic layer provided between the second side shield layer and the stacked body. A distance between the first side shield layer and the first shield guide layer is shorter than a distance between the stacked body and the first shield guide layer. A distance between the second side shield layer and the second shield guide layer is shorter than a distance between the stacked body and the second shield guide layer.
摘要:
A magnetoresistive device with CPP structure, comprising a nonmagnetic intermediate layer, and a first ferromagnetic layer and a second ferromagnetic layer stacked and formed with said nonmagnetic intermediate layer interposed between them, wherein each of said first and second ferromagnetic layers comprises a sensor area joining to the nonmagnetic intermediate layer and a magnetization direction control area that extends further rearward from the position of the rear end of said nonmagnetic intermediate layer; a magnetization direction control multilayer arrangement is interposed at an area where the magnetization direction control area for said first ferromagnetic layer is opposite to the magnetization direction control area for said second ferromagnetic layer to produce magnetizations of the said first and second ferromagnetic layers which are antiparallel with each other; and said sensor area is provided at both width direction ends with biasing layers working such that the mutually antiparallel magnetizations of said first and second ferromagnetic layers intersect in substantially orthogonal directions.
摘要:
The present invention provides a magnetic head including a magnetic flux guide layer for effectively inducing an external magnetic field in a free magnetic layer. A magnetic domain control layer is formed in a space below the magnetic flux guide layer and in front of a multilayer film near a surface facing a recording medium. Therefore, the shape of the magnetic flux guide layer can be made substantially flat to improve flux transmission efficiency. Also, the magnetization of the magnetic flux guide layer is controlled by laminating the magnetic flux guide layer on the magnetic domain control layer. Therefore, the magnetic domain control layer can be formed in a substantially flat thin film to stabilize a bias magnetic field to be supplied to the magnetic flux guide layer. Furthermore, the gap length of the magnetic head can be kept short.
摘要:
A soft magnetic layer is made of nickel iron alloy containing crystals of the face-centered cubic lattice and crystals of the body-centered cubic lattice. The face-centered cubic lattice serves to establish a soft magnetic property in the nickel iron alloy. The body-centered cubic lattice contributes to reduction in the electric resistance of the magnetoresistive film as well as to improvement of the magnetoresistive ratio of the magnetoresistive film. Even if the magnetoresistive film is further reduced in size, the magnetoresistive film can sufficiently be prevented from suffering from an increase in the temperature. Even if a sensing current of a larger current value is supplied to the magnetoresistive film, the magnetoresistive film is reliably prevented from deterioration in the characteristics as well as destruction.
摘要:
A magnetic material having a low coefficient of thermal expansion of 11.5×10−6/K or less is used for forming at least one of a lower shield or an upper shield. A laminated film comprising a layer of the magnetic material having a low coefficient of thermal expansion of 11.5×10−6/K or less, and an 80 wt % NiFe alloy layer, is used for forming at least one of the lower shield and the upper shield. Thus, the thin film magnetic head having reduced after-record noise and reduced thermal protrusion can be obtained.
摘要:
The present invention provides a magnetic head having improved characteristics, using a magnetoresistive device in which current flows across the film plane such as a TMR device. In a first magnetic head of the present invention, when the area of a non-magnetic layer is defined as a device cross-section area, and the area of a yoke is defined as a yoke area, viewed along the direction perpendicular to the surface of the substrate over which the yoke and the magnetoresistive device are formed, then the device cross-section area is not less than 30% of the yoke area, so that a resistance increase of the device cross-section area is suppressed. In a second magnetic head of the present invention, a magnetoresistive device is formed on a substrate, and a yoke is provided above a non-magnetic layer constituting the device. In a third magnetic head of the present invention, the free layer of the magnetoresistive device includes at least two magnetic films and at least one non-magnetic film that are laminated alternately, and the thickness of the non-magnetic layer is not less than 2 nm and not more than 10 nm, and magnetostatic coupling is dominant. In a fourth magnetic head of the present invention, a magnetic gap is provided adjacent to the magnetoresistive device and the magnetic films are coupled antiferromagnetically.
摘要:
The present invention provides a magnetoresistive (MR) element that is excellent in MR ratio and thermal stability and includes at least one magnetic layer including a ferromagnetic material M-X expressed by M100-aXa. Here, M is at least one selected from Fe, Co and Ni, X is expressed by X1bX2c,X3d (X1 is at least one selected from Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt and Au, X2 is at least one selected from Al, Sc, Ti, V, Cr, Mn, Ga, Ge, Y, Zr, Nb, Mo, Hf, Ta, W, Re, Zn and lanthanide series elements, and X3 is at least one selected from Si, B, C, N, O, P and S), and a, b, c and d satisfy 0.05≦a≦60, 0≦b≦60, 0≦c≦30, 0≦d≦20, and a=b+c+d.
摘要翻译:本发明提供了一种磁阻(MR)元件,它具有优异的MR比和热稳定性,并且包括至少一个包括由M 100-a X表示的铁磁材料MX的磁性层, / SUB>。 这里,M是选自Fe,Co和Ni中的至少一种,X由X 1表示,X 2, X 1,X 3是选自Cu,Ru,Rh,Pd,Ag,Os,Ir中的至少一种 ,Pt和Au,X 2是选自Al,Sc,Ti,V,Cr,Mn,Ga,Ge,Y,Zr,Nb,Mo,Hf,Ta,W中的至少一种, Re,Zn和镧系元素,X 3是选自Si,B,C,N,O,P和S中的至少一种),a,b,c和d满足0.05 < = a <= 60,0 <= b <= 60,0 <= c <= 30,0 <= d <= 20,a = b + c + d。
摘要:
A magnetoresistive element includes a multilayer film configuration including: a tunnel insulation layer; and a pair of magnetic layers that are laminated with the tunnel insulation layer interposed therebetween. A resistance value of the magnetoresistive element varies with a relative angle between magnetic orientations of both of the magnetic layers, and at least one of the magnetic layers includes a magnetic film having a thermal expansion coefficient not greater than a value obtained by adding 2×10−6/K to a thermal expansion coefficient of the tunnel insulation layer. The thus configured magnetoresistive element can exert excellent thermal stability. The use of such a magnetoresistive element can realize a magnetic head, a magnetic memory element and a magnetic recording apparatus with excellent thermal stability.