Abstract:
An image inspection apparatus includes a tester and an image storage processor. The tester inspects image data for an abnormality and, in a case where the tester detected an abnormality, further detects a kind of the abnormality. The image data is generated by reading a surface of a sheet on which an image is formed by an image forming apparatus. The image storage processor determines a compression condition depending on whether or not the tester detected an abnormality and depending on the kind of the abnormality, performs compression processing of the image data under the compression condition, and generates data to be stored.
Abstract:
Disclosed is an image forming system, including: a conveying unit configured to convey recording paper; an image forming unit configured to print an image on the recording paper; an image reading unit configured to optically read the recording paper and to obtain a read image; and a correction control unit configured to control an execution of a test operation in which a test pattern including one or more thin lines are printed on the recording paper by the image forming unit and in which the test pattern is read by the image reading unit, to collect information indicting operation state of each unit in the execution of the test operation, to evaluate the thin lines in the read image obtained in the test operation in consideration of the collected information and to carry out a correction relating to printing of a specified thin line.
Abstract:
An image inspection device which makes it easy to recognize a defect in an image formed on a recording medium, through an image display. The image inspection device includes an inspection report creating section for creating an inspection report which gives an inspection image read from a recording medium a mark indicating a defect generated in the inspection image. When the defect has a directional component, the inspection report creating section creates an inspection report which gives a mark indicating the direction of extension of the defect at a position where the defect has been generated in the inspection image.
Abstract:
An image processing apparatus includes: an image generating section to generate an image having a gradation value for each pixel by a rasterizing process; and a position correcting section to correct a position of a certain region of the image on a pixel basis. The image generating section generates the image including a line image by the rasterizing process, so that a line width of the line image is adjusted to be equal to or more than twice a minimum line width which can be generated by the rasterizing process.
Abstract:
An image processing apparatus includes a hardware processor that: divides each of pixels of image data in units of blocks, and compresses the image data using a maximum value and a minimum value of a pixel value in each of the divided blocks; extracts a maximum value and a minimum value of each of the blocks from the compressed image data; detects an edge of an object on the basis of at least one of the extracted maximum value and the minimum value of each of the blocks; performs edge correction of the compressed image data by increasing or decreasing the maximum value and the minimum value of each of the blocks within a correction range from the detected edge; and decompresses the image data that have undergone edge correction, using the maximum value and the minimum value of each of the blocks.
Abstract:
An image processing apparatus includes a contour extracting unit, a contour processing unit, a dithering unit and a binarizing unit. The contour extracting unit extracts a contour pixel forming a contour part from pixels of image data having multiple gradation values. The contour processing unit performs adjustment to reduce a gradation value of the contour pixel extracted by the contour extracting unit. The dithering unit binarizes, by using a blue noise dither matrix, the gradation value of the contour pixel subjected to the adjustment by the contour processing unit. The binarizing unit binarizes, of the pixels of the image data, a gradation value of a non-contour pixel which is other than the contour pixel.
Abstract:
A learning apparatus includes an image defect detector that detects an image defect on a sheet on which an image has been formed, a likelihood calculator that calculates a likelihood that an image forming member associated with the image formation is a generation factor of the image defect, a predictor that predicts a change in the image defect generated by the image forming member as a generation factor; and a learning unit that causes the predictor to perform learning using the detected image defect as learning data, wherein the learning unit changes, according to the likelihood, a learning mode of the image defect to be used as the learning data.