Abstract:
A method for compressing a bi-level document image containing text is disclosed. The document image is segmented into symbol images each representing a letter, numeral, etc. in the document. The symbol images are classified into a plurality of classes, each class being associated with a template image and a class index. Classification is done by comparing each symbol to be classified with template of existing classes, using a number of image features including zoning profiles, side profiles, topology statistics, and low-order image moments. These image features are compared using a tolerance based method to determine whether the symbol matches the template. After classification, certain classes that have few symbols classified into them may be merged with other classes. In addition, the template images of the classes are down-sampled, where the final sizes of the template images are dependent on the likelihood of confusion of the template with other templates.
Abstract:
In a document image enhancement method, text character strokes are enhanced in a way such that areas closer to the center (skeleton) of each stroke are enhanced (e.g. made darker) by greater amounts than areas farther away from the center. Each text or line region of the input image is first binarized to generate a binary image containing connected components corresponding to character strokes and lines. Multiple levels of pseudo-skeletons are computed for each connected component, for example by using successive thinning. Multiple pseudo-skeleton difference areas, i.e. differences between successive levels of pseudo-skeletons, are generated. Pixels located in different pseudo-skeleton difference areas are enhanced by different amounts, by applying different inverse-degradation functions. Graphical regions of the input image may be treated with edge enhancement.
Abstract:
A method for encoding and decoding color barcodes to increase their data capacity. The encoding steps include determining a shape, a foreground color and a background color for each data cell, wherein a combination of the shape, foreground and background colors for the data cell is chosen from a plurality of such combinations in accordance with a value of the digital data to be encoded; and coloring some pixels in the data cell with a foreground color and other pixels with a background color, in accordance with the shape, foreground and background colors for the data cell determined above. The decoding steps include segmenting the data cells, recognizing a shape, a foreground color of the shape and a background color of the data cell, and obtaining digital data from a combination of the shape and foreground and background colors in each data cell.
Abstract:
A method, a computer program product, and a system for analyzing exam-taking behavior and improving exam-taking skills are disclosed, the method includes obtaining a student answering sequence and timing to an examination having a series of questions; comparing the student answering sequence and timing with results from a statistic analysis of the examination obtained from a plurality of students; and identifying an abnormality in the student answering sequence and timing according to the comparison.
Abstract:
A method for compressing a bi-level document image containing text is disclosed. The document image is segmented into symbol images each representing a letter, numeral, etc. in the document. The symbol images are classified into a plurality of classes, each class being associated with a template image and a class index. Classification is done by comparing each symbol to be classified with template of existing classes, using a number of image features including zoning profiles, side profiles, topology statistics, and low-order image moments. These image features are compared using a tolerance based method to determine whether the symbol matches the template. After classification, certain classes that have few symbols classified into them may be merged with other classes. In addition, the template images of the classes are down-sampled, where the final sizes of the template images are dependent on the likelihood of confusion of the template with other templates.
Abstract:
A method for separating foreground and background contents in a document image is provided. The method first computes a pixel-wise map of maximal local features (e.g., local variance, local contrast, etc.), which is binarized to generate a mask for potential foreground. In order to utilize color information effectively, the local feature map is computed using all color channels of the image. Then the background image is obtained by inpainting the mask regions from the non-mask regions of the original document image. Adaptive thresholding is applied to the difference between the original document image and the background image to obtain the binary foreground image. Post-processing of the binary foreground image can further remove undesirable elements. Finally, a more accurate background image can be obtained by inpainting the original document image using the binary foreground image as a mask.
Abstract:
A method, computer program product, and a system for enhancing an interaction between a teacher and a student are disclosed, the method includes receiving video images of a region of interest from a plurality of multi-functional devices; comparing the video images of the region of interest received from the plurality of multi-functional devices; detecting differences in the region of interest of at least one multi-functional device in comparison to the region of interest of the plurality of multi-functional devices; and providing a signal to the at least one multi-functional device based on the detected difference in the region of interest.
Abstract:
A simple, fast, and effective method is provided for background removal for document images with dark text over relatively uniform or slow-varying non-white background. Candidate regions for background removal are first identified by binarizing the input gray-scale image using a global threshold very close to white. Large contours in the binarized image are identified as candidate regions. A histogram analysis is applied to preliminarily identify regions containing graphics, which are excluded from further processing. The remaining candidate regions are individually binarized. The binarized regions are analyzed to determine whether they contain graphics or text/table, by examining their geometric characteristics and statistics of connected components within them. For candidate regions determined to contain text or tables, background pixels in the input image are set to white using a mask which is the inverse of the individually binarized images of the regions. Regions that contain graphics are left unchanged.