摘要:
Protocols for OFDM/OFDMA/SC-FDMA based wireless networks provide adaptive inter-cell interference management without explicit spectrum or frequency planning. Base stations and mobile stations acquire information about subcarrier allocation from a handoff protocol. The mobile stations can also acquire this information using cognitive sensing. Cognitive sensing can be rewarded by the base station. Using this information, subcarriers can be allocated randomly, with blind optimization, or by joint optimization. The stations can use game theory to select among the different optimization strategies.
摘要:
Protocols for OFDM/OFDMA/SC-FDMA based wireless networks provide adaptive inter-cell interference management without explicit spectrum or frequency planning. Base stations and mobile stations acquire information about subcarrier allocation from a handoff protocol. The mobile stations can also acquire this information using cognitive sensing. Cognitive sensing can be rewarded by the base station. Using this information, subcarriers can be allocated randomly, with blind optimization, or by joint optimization. The stations can use game theory to select among the different optimization strategies.
摘要:
A system includes a structure configured to exchange the energy wirelessly via a coupling of evanescent waves. The structure is non-radiative, and generates an electromagnetic (EM) near-field in response to receiving the energy. The structure is configured to exchange the energy when the structure is in the resonant mode. The system also includes a tuning module configured to transition the structure in and out of the resonant mode based on an instruction, an energy monitor module configured to determine the instruction based on information indicative of the energy stored and/or exchange by the structure, and a transceiver configured to transmit and/or to receive the instruction.
摘要:
Embodiments of the invention describe a method for antenna selection (AS) in a wireless communication network, the network comprising user equipment (UE), configured to transmit a sounding reference signal (SRS) from a subset of antennas at a time without transmitting user data. The method transmits a first SRS from a first subset of antennas in a first subframe, wherein the first subframe does not include the user data, and transmits a second SRS from a second subset of antennas in a second subframe, wherein the second subframe does not include the user data. After receiving, in response to the transmitting the first SRS and the second SRS, information identifying an optimal subset of antennas from the first subset of antennas and the second subset of antennas, the method selects the optimal set of antennas such that the optimal subset of antennas is selected without transmitting the user data.
摘要:
Embodiments of the invention describe a method for antenna selection (AS) in a wireless communication network, the network comprising user equipment (UE), wherein the UE comprises a plurality of subsets of antennas including a first subset of antennas and a second subset of antennas, and wherein the UE is configured to transmit a sounding reference signal (SRS) from a subset of antennas at a time. The method transmits a first SRS from the first subset of antennas, transmits a second SRS from the second subset of antennas, receives, in response to the transmitting the first SRS and the second SRS, information identifying an optimal subset of antennas from the first subset of antennas and the second subset of antennas, and transmits user data from the optimal subset of antennas.
摘要:
The embodiments of the invention describe a method for antenna selection in a wireless communication network. The network includes a transceiver having a set of antennas. The transceiver is configured to transmit a frequency-hopped sounding reference signal (SRS) over a subband from a subset of antennas at a time. The transceiver transmits the frequency-hopped SRS from subsets of antennas in the set of antennas alternately. In response to the transmitting, the transceiver receives information indicative of an optimal subset of antennas and transmits data from the optimal subset of antennas.
摘要:
The embodiments of the invention describe a method for antenna selection in a wireless communication network. The network includes a transceiver having a set of antennas. The transceiver is configured to transmit a frequency-hopped sounding reference signal (SRS) over a subband from a subset of antennas at a time. The transceiver transmits the frequency-hopped SRS from subsets of antennas in the set of antennas substantially alternately. In response to the transmitting, the transceiver receives information indicative of an optimal subset of antennas and transmits data from the optimal subset of antennas.
摘要:
A hybrid soft output MIMO detector uses a QR decomposition detector followed by a Markov chain Monte Carlo detector. The QRD-M generates initial candidate decision vectors, which are used as input for the Markov chain Monte Carlo detection to generate the soft output.
摘要:
In a cellular network, symbols are encoded and modulated to produce a modulated signal The modulated signal is mapped to a subcarrier using a spatial mapping matrix. An inverse fast Fourier transform is applied to the mapped signal to produce groups of tones. The groups of tones are transmitting concurrently to multiple receivers using the same channel as orthogonal frequency-division multiplexing access (OFDMA) signals. There is one group of tones for each receiver.
摘要:
A method and system enables and improves performance of hybrid automatic repeat request (HARQ) operations on channels between stations of an orthogonal frequency division multiple access (OFDMA) wireless communication network. There, the number of parallel HARQ channels is increased adaptively, and one connection identifier is used to unambiguously identify a set of MAC protocol data units (MPDUs) communicated over parallel HARQ channels. A sequence number is used to avoid out-of-order MPDU delivery when MPDUs are transmitted over parallel HARQ channels. The MPDUs can be concatenated or encapsulated. The maximum number of the parallel HARQ channels can be increased to 256, and can be negotiated when a station enters or re-enters the network.