摘要:
A method allocates bandwidth from a radio frequency spectrum in a cellular network including a set of cells. Each cell includes a base station for serving a set of mobile stations in the cell. An area around each base station is partitioned into a center region and an edge region. In each base station, cell-center bandwidth for use by the mobile stations in the center region is reserved according to an inter-cell interference coordination (ICIC) protocol, and cell-edge bandwidth for use by the mobile stations in the edge region is reserved according to the ICIC protocol. The bandwidth can be fixed or adaptive to reduce the signaling overhead. The adaptive bandwidth can be further partitioned into reserved and the free bands. Mobile stations are classified as primary and secondary users, depending on whether they use or are assigned the fixed or adaptive band radio resources.
摘要:
A method allocates bandwidth from a radio frequency spectrum in a cellular network including a set of cells. Each cell includes a base station for serving a set of mobile stations in the cell. An area around each base station is partitioned into a center region and an edge region. In each base station, cell-center bandwidth for use by the mobile stations in the center region is reserved according to an inter-cell interference coordination (ICIC) protocol, and cell-edge bandwidth for use by the mobile stations in the edge region is reserved according to the ICIC protocol. The bandwidth can be fixed or adaptive to reduce the signaling overhead. The adaptive bandwidth can be further partitioned into reserved and the free bands. Mobile stations are classified as primary and secondary users, depending on whether they use or are assigned the fixed or adaptive band radio resources.
摘要:
A method for allocating resources in an orthogonal frequency division multiple access (OFDMA) network, where each cell in the network has a center region and an edge region. The cell center region uses a frequency band orthogonal to the frequency band used by the cell edge region. The frequency band is made up of resource blocks (RBs) or non-overlapping sets of subcarriers. Upon availability of cell-center RBs, cell-center user equipment (UEs) are assigned resource blocks. A fixed number of cell edge regions from a few adjacent cells form a cluster, and only the cell edge regions with the highest achievable throughput rate within each cluster gets to transmit in a given scheduling instance.
摘要:
A method for allocating resources in an orthogonal frequency division multiple access (OFDMA) network, where each cell in the network has a center region and an edge region. The cell center region uses a frequency band orthogonal to the frequency band used by the cell edge region. The frequency band is made up of resource blocks (RBs) or non-overlapping sets of subcarriers. Upon availability of cell-center RBs, cell-center user equipment (UEs) are assigned resource blocks. A fixed number of cell edge regions from a few adjacent cells form a cluster, and only the cell edge regions with the highest achievable throughput rate within each cluster gets to transmit in a given scheduling instance.
摘要:
A user equipment (UE) receives a message that indicates a sidelink (SL) communication resource configuration to be used by the UE for communicating SL control information and SL data between the UE and another UE. The UE transmits SL control information according to the SL communication resource configuration, and transmits SL data according to the SL communication resource configuration. The SL control information and the SL data are transmitted by the UE without the UE receiving, in a downlink control information (DCI), a grant of communication resources.
摘要:
Systems and methods are disclosed for establishing a device-to-device (D2D) group amongst a plurality of user equipments (UEs). In one embodiment a target UE transmits, using D2D communication, a request message inviting at least one other UE to be part of a D2D group with the target UE. A neighbour UE receives the request message and transmits a report message indicating that the neighbour UE will be part of the D2D group with the target UE. A base station receives the report message and transmits to the target UE and to the neighbour UE a confirmation message indicating that the neighbour UE is in the D2D group with the target UE.
摘要:
The invention provides a self-adaptive downlink power control scheme for OFDMA-based wireless cellular networks suitable for noise-limited environments. Downlink power levels are assigned in a distributed manner in the absence of any requirement for coordination or cooperation between cells. Distributed assignment allows for more optimal usage of the available transmit power at the base stations and more complete exploitation of the flexibility of frequency domain scheduling. In one embodiment, base stations in a cellular network service mobile user equipment within the respective base station coverage areas, and categorize the user equipment in a plurality of power levels according to certain criteria in accordance with such factors as channel experience and quality. A load-balancing self-adjustment mechanism allows automatic balancing of the load between different power levels.
摘要:
A method for transmitting data over a SL data channel wherein a transmit UE and a receive UE are each semi-statically provided with a CG configuration such that a CG configuration indication does not have to be transmitted in association with each individual data transmission during a duration that the CG configuration is applied.
摘要:
Methods and devices are provided to enable a cooperating group of user equipments (UEs) to receive a group-specific common-parameters configuration (CPC) message over a first spectrum band and access a second spectrum band synchronously for device-to-device (D2D) sidelink transmission within the group. In an embodiment, a UE operating in a cooperation mode in a cooperating group of UEs receives a group-specific common-parameters configuration (CPC) message from a transmit point (TP) over a first spectrum band, the group-specific CPC message comprising information to configure cooperating UEs in the group for synchronous clear channel assessment (CCA) and aligned sidelink transmission starting times in a second spectrum band. The UE performs a synchronous CCA in the second spectrum band in accordance with a common contention window generated based on the information in the group-specific CPC message.
摘要:
A user equipment (UE) receives a message that indicates a sidelink (SL) communication resource configuration to be used by the UE for communicating SL control information and SL data between the UE and another UE. The UE transmits SL control information according to the SL communication resource configuration, and transmits SL data according to the SL communication resource configuration. The SL control information and the SL data are transmitted by the UE without the UE receiving, in a downlink control information (DCI), a grant of communication resources.