Abstract:
The present invention discloses a passive cooling system of a containment building, to which a plate-type heat exchanger is applied. A passive cooling system of a containment building comprises: a containment building; a plate-type heat exchanger provided to at least one of the inside and the outside of the containment building and comprising channels respectively provided to the both sides of a plate so as to be arranged dividedly from each other such that the plate-type heat exchanger carries out mutual heat exchange between the internal atmosphere of the containment building and a heat exchange fluid while maintaining a pressure boundary; and a pipe connected to the plate-type heat exchanger by penetrating the containment building so as to form the path of the internal atmosphere of the containment building or the heat exchange fluid.
Abstract:
The present invention relates to a passive heat removal system which circulates cooling fluid via a main water supply line, connected to the lower inlet of a steam generator, and a main steam pipe, connected to the top outlet of the steam generator, to the steam generator, in order to remove sensible heat of a reactor coolant system and residual heat of a core, the passive heat removal system comprising: supplementary equipment for receiving surplus cooling fluid or supplying supplementary cooling fluid in order to maintain the flow rate of the cooling fluid within a predetermined range, wherein the supplementary equipment comprises: a supplementary tank, installed at a predetermined height between the lower inlet and the top outlet of the steam generator, for receiving the surplus cooling fluid or supplying the supplementary cooling fluid, passively, depending on the flow rate of the cooling fluid; a first connection pipe, connected to the main steam pipe and the supplementary tank, for forming a flow path to allow the cooling fluid, exhausted to the main steam pipe from the steam generator, to flow to the supplementary tank; and a second connection pipe connected to the supplementary tank and the main water supply pipe for forming a supply flow path of the supplementary cooling fluid supplied from the supplementary tank.
Abstract:
The present invention provides a facility for reducing radioactive material comprising: a cooling water storage unit installed inside a containment and formed to store cooling water; a boundary unit forming a boundary of radioactive material inside the containment and surrounding a reactor coolant system installed inside the containment to prevent a radioactive material from releasing from the reactor coolant system or a pipe connected with the reactor coolant system to the containment; a connecting pipe connected with an inner space of the boundary unit and the cooling water storage unit to guide a flow of a fluid caused by a pressure difference between the boundary unit and the cooling water storage unit from the boundary unit to the cooling water storage unit; and a sparging unit disposed to be submerged in the cooling water stored in the cooling water storage unit and connected with the connecting pipe to sparge the fluid that has passed through the connecting pipe and the radioactive material contained in the fluid to the cooling water storage unit.
Abstract:
A heat exchanger includes a first flow path member including a first plate having a first flow path portion providing a plurality of flow paths through which a first fluid flows, and a first bonding plate diffusion-bonded to the first plate to cover the first flow path portion; and a second flow path member including a second plate having a second flow path portion providing a plurality of flow paths through which a second fluid for exchanging heat with the first fluid flows. The first flow path member and the second flow path member are diffusion-bonded to each other.
Abstract:
A heat exchanger includes a body having an inlet header through which a fluid is introduced, and an outlet header through which the fluid is discharged; and one or more plates accommodated in the body and provided with flow path modules providing flow paths for the fluid introduced through the inlet header to flow to the outlet header. The heat exchanger further includes at least one flow path adjuster each having at least a portion thereof accommodated in the body and being movable or rotatable to open or close a part or all of the flow paths or to change directions of the flow paths so that a flow of the fluid is adjusted.
Abstract:
The present disclosure may disclose a multi stage safety injection device and a passive safety injection system having the same, including a safety injection tank formed to contain coolant to be injected into a reactor vessel by a gravitational head of water when an accident occurs in which the pressure or water level of the reactor vessel is decreased, a pressure balance line connected to the reactor vessel and safety injection tank to form a pressure balance state between the reactor vessel and the safety injection tank, a safety injection line connected to a lower end portion of the safety injection tank and the reactor vessel to inject coolant to the reactor vessel in a pressure balance state between the reactor vessel and the safety injection tank, and a flow control line extended from the safety injection line to an inner portion of the safety injection tank, and provided with safety injection ports into which coolant is injected at predetermined heights, respectively, to reduce the flow rate of coolant injected into the reactor vessel step by step according to the water level reduction of the safety injection tank, in order to inject coolant to the reactor vessel at multi stages.
Abstract:
The present disclosure relates to a passive safety system which uses a heat exchanger together with a thermoelectric element, and a nuclear power plant comprising the same. Disclosed are a passive safety system and a nuclear power plant comprising the same, the passive safety system comprising: a heat exchanger; a thermoelectric element; and a fan unit. The heat exchanger is formed at a space inside or outside a sealed housing, and in the heat exchanger, atmosphere is introduced and heat exchange is carried out in order to lower the pressure or temperature of the atmosphere inside the housing if an accident occurs in a reactor coolant system or a secondary system disposed inside the housing. The thermoelectric element is disposed in the heat exchanger, and when a cooling fluid, for performing heat exchange with the atmosphere, performs heat exchange with the atmosphere, the thermoelectric element is configured to generate electricity due to a temperature difference between the atmosphere and the cooling fluid. The fan unit is connected to the thermoelectric element via an electricity path so as to receive electricity generated by the thermoelectric element, and is configured to increase the flow rate of the atmosphere or the cooling fluid which passes through the heat exchanger such that the heat exchange of the atmosphere and the cooling fluid can be smoothly carried out.
Abstract:
Provided is a passive containment spray system including: a spray coolant storage unit that communicates with a containment accommodating a reactor vessel and maintains equilibrium of pressure between the spray coolant storage unit and the containment; a spray pipe that is installed within the containment in such a manner that when an accident occurs, a coolant supplied from the spray coolant storage unit is sprayed into the containment through the spray pipe due to an increase in pressure within the containment; and a connection pipe one end of which is inserted into the spray coolant storage unit in such a manner as to provide a flow path along which the coolant flows and the other end of which is connected to the spray pipe in such a manner that the coolant is passively supplied to the spray pipe through the connection pipe therein.
Abstract:
A passive safety injection system includes a containment, a reactor installed in the containment, safety injection tanks installed in the containment, a safety injection line between the reactor or a reactor coolant system and each of the safety injection tanks to guide water, which is stored in the safety injection tank, into the reactor when a water level in the reactor is reduced due to a loss of coolant accident, and a pressure balance line between the reactor or the reactor coolant system and the safety injection tank to guide high-temperature steam from the reactor into the safety injection tank upon the loss of coolant accident. The safety injection line has an orifice and a check valve thereon, and the pressure balance line has an orifice and isolation valves thereon. The water in the safety injection tank stably flows into the reactor for many hours.
Abstract:
According to an embodiment of the present invention, an emergency core cooling system (ECCS) valve provided between a reactor vessel of a system-integrated modular advanced reactor (SMART) and a small containment vessel formed to surround the reactor vessel so that a coolant is filled in a space between the reactor vessel and the small containment vessel in the event of a loss of coolant accident (LOCA) includes an outer shell connected to the reactor vessel and formed to protrude toward the small containment vessel and having a connector formed therein so as to communicatively connect an inside of the reactor vessel to an inside of the small containment vessel, an inner shell provided inside the outer shell at a preset distance from an inner wall of the outer shell, a piston movably constrained and inserted through a piston opening formed in the inner shell at a position facing the connector of the outer shell to open and close the connector, and a spring provided on an outer circumferential surface of the piston to provide a restoring force for moving the piston to a side of the reactor vessel, wherein the piston operates to open the connector when a difference between an internal pressure of the reactor vessel and an internal pressure of the small containment vessel is less than the restoring force of the spring.