摘要:
Disclosed is a bidirectional DC/DC converter including: a primary side circuit that includes a first DC power source or a first load; a secondary side circuit that includes a second load or a second DC power source; and a power transfer unit that is capable of transferring power bi-directionally between the primary side circuit and the secondary side circuit. Further, the bidirectional DC/DC converter includes a control circuit that controls the primary side circuit and secondary side circuit in such a way that current flows through the power transfer unit from the first DC power source to the second load or from the second DC power source to the first load.
摘要:
Disclosed is a bidirectional DC/DC converter including: a primary side circuit that includes a first DC power source or a first load; a secondary side circuit that includes a second load or a second DC power source; and a power transfer unit that is capable of transferring power bi-directionally between the primary side circuit and the secondary side circuit. Further, the bidirectional DC/DC converter includes a control circuit that controls the primary side circuit and secondary side circuit in such a way that current flows through the power transfer unit from the first DC power source to the second load or from the second DC power source to the first load.
摘要:
In an electronic switch which includes a pair of terminal portions 14, 14, and self arc-suppressing elements Q21, Q22 having a one-way on and off control construction connected in inverse-series between the pair of terminal portions and which turns on and off the self arc-suppressing elements Q21, Q22 with phase control, shunt resistors R51, R52 provided between the pair of terminal portions 14, 14 and connected in series to the pair of self arc-suppressing elements Q21, Q22 and thyristors S71, S72 for extracting the gate voltages applied to gates of the self arc-suppressing elements Q21, Q22 upon driving are provided. Furthermore, thyristors S71, S72 are driven by the voltages across the shunt resistors R51, R52 generated when overcurrent larger than predetermined current flows through the shunt resistors R51, R52.
摘要:
To provide an electronic switch capable of instantly releasing overcurrent from flowing between a pair of terminal portions. In an electronic switch which comprises a pair of terminal portions 14, 14 ad self arc-suppressing elements Q21, Q22 having a one-way on and off control construction connected in inverse-series between, the pair of terminal portions and which turns on and off the self arc-suppressing elements Q21, Q22 with phase control, shunt resistors R51, R52 provided between the pair of terminal portions 14, 14 and connected in series to the pair of self arc-suppressing elements Q21, Q22 and thyristors S71, S72 for extracting the gate voltages applied to gates of the self arc-suppressing elements Q21, Q22 upon driving are provided. Furthermore, thyristors S71, S72 are driven by means of the voltages across the shunt resistors R51, R52 generated when overcurrent larger than predetermined current flows through the shunt resistors R51, R52.
摘要:
A solar battery SB for detecting the surrounding brightness is provided and a switching element SW is controlled based on output voltage of the solar battery SB. The switching element SW is made up of MOSFETs Q1 and Q2. To form an electronic automatic on/off switch, a triac Q is controlled by turning on/off the switching element SW.
摘要:
In a phase controller used in a light control of an incandescent lamp, noise reduction, prevention of elements from damage due to short circuit current, downsizing and lower cost are purposed. A CPU circuit of a control circuit sets a gradual increase term during which a load voltage applied to the incandescent lamp is gradually increased by driving a self-quenching type switching device such as an IGBT. After passing the gradual increase term, a main switching device such as a TRIAC is turned on. The phase controller further comprises a current sensor such as a shunt resistor for sensing a value of the load current flowing through the self-quenching type switching device, according to need. The CPU circuit compares the sensed value of the load current with at least one reference value, and selects driving manner of the main switching device and the self-quenching type switching device corresponding to the result of comparison.
摘要:
An electromagnet drive apparatus being characterized by a switching element 1 connected in series with a coil 3 of an electromagnet; a pulse signal generation circuit 16 which generates, on predetermined cycles, a pulse signal used for turning on the switching element; a regenerative circuit 4 which permits flow of a regenerated electrical current when the switch section is turned on and the switching element is turned off from a state in which the switch section and the switching element are in an on state and a source voltage is applied to the coil of the electromagnet, and which causes the power absorbing element to immediately reduce the regenerated electrical current flowing through the coil of the electromagnet when the switch section and the switching element are turned off; and a delay circuit 11 which turns on the switch section by application of the supply voltage and maintains the switch section in an on state until a predetermined period of time elapses after the application of the supply voltage has been stopped.