Abstract:
In one embodiment there is provided, a display driver system, comprising, at least one display driver; a magnetic random access memory (MRAM) macro; and a display driver interface coupling the MRAM macro and the at least one display driver.
Abstract:
In one embodiment there is provided, a display driver system, comprising, at least one display driver; a magnetic random access memory (MRAM) macro; and a display driver interface coupling the MRAM macro and the at least one display driver.
Abstract:
An accelerator chip can be positioned between a processor chip and a memory. The accelerator chip enhances the operation of a Java program by running portions of the Java program for the processor chip. In a preferred embodiment, the accelerator chip includes a hardware translator unit and a dedicated execution engine.
Abstract:
An accelerator chip can be positioned between a processor chip and a memory. The accelerator chip enhances the operation of a Java program by running portions of the Java program for the processor chip. In a preferred embodiment, the accelerator chip includes a hardware translator unit and a dedicated execution engine.
Abstract:
A hardware Java™ accelerator is provided to implement portions of the Java™ virtual machine in hardware in order to accelerate the operation of the system on Java™ bytecodes. The Java™ hardware accelerator preferably includes Java™ bytecode translation into native CPU instructions. The combination of the Java™ hardware accelerator and a CPU provides a embedded solution which results in an inexpensive system to run Java™ programs for use in commercial appliances.
Abstract:
A hardware Java accelerator is provided to implement portions of the Java virtual machine in hardware in order to accelerate the operation of the system on Java bytecodes. The Java hardware accelerator preferably includes Java bytecode translation into native CPU instructions. The combination of the Java hardware accelerator and a CPU provides a embedded solution which results in an inexpensive system to run Java programs for use in commercial appliances.
Abstract:
A hardware Java accelerator is provided to implement portions of the Java virtual machine in hardware in order to accelerate the operation of the system on Java bytecodes. The Java hardware accelerator preferably includes Java bytecode translation into native CPU instructions. The combination of the Java hardware accelerator and a CPU provides a embedded solution which results in an inexpensive system to run Java programs for use in commercial appliances.
Abstract:
A hardware Java accelerator is provided to implement portions of the Java virtual machine in hardware in order to accelerate the operation of the system on Java bytecodes. The Java hardware accelerator preferably includes Java bytecode translation into native CPU instructions. The combination of the Java hardware accelerator and a CPU provides a embedded solution which results in an inexpensive system to run Java programs for use in commercial appliances.
Abstract:
An accelerator chip can be positioned between a processor chip and a memory: The accelerator chip enhances the operation of a Java program by running portions of the Java program for the processor chip. In a preferred embodiment, the accelerator chip includes a hardware translator unit and a dedicated execution engine.
Abstract:
An accelerator chip can be positioned between a processor chip and a memory. The accelerator chip enhances the operation of a Java program by running portions of the Java program for the processor chip. In a preferred embodiment, the accelerator chip includes a hardware translator unit and a dedicated execution engine.