摘要:
An automated computerized scheme for determination of the likelihood of malignancy in pulmonary nodules. The present invention includes steps of obtaining at least one computed tomography medical image of a pulmonary nodule in determining if the pulmonary nodule is malignant based on the examination of seven patient or image features. The method can be implemented when instructions are loaded into a computer to program the computer. The significance of employing seven patient or image features is that statistically, seven features are the most practical based on the unique implementation of statistical analysis. Out of the seven features that are now analyzed to determine if a pulmonary nodule is malignant, these features are selected to optimize the accuracy of the diagnosis of a pulmonary nodule. Through a unique sampling scheme, different embodiments of the present invention utilize different combinations of features to optimize the accuracy of the method of the present invention.
摘要:
An automated method for analyzing a nodule and a computer storage medium storing computer instructions by which the method can be implemented when the instructions are loaded into a computer to program the computer. The method includes obtaining a digital image including the nodule; segmenting the nodule to obtain an outline of the nodule, including generating a difference image from chest image, identifying image intensity contour lines representative of respective image intensities in a region of interest including the nodule, and obtaining an outline of the nodule based on the image intensity contours; extracting features of the nodule based on the outline; applying features including the extracted features to at least one image classifier; and determining a likelihood of malignancy of the nodule based on the output of the at least one classifier. In one embodiment, extracted features are applied to a linear discriminant analyzer and/or an artificial neural network analyzer, the outputs of which are thresholded and the nodule determined to be non-malignant if each classifier output is below the threshold. In another embodiment, a common nodule appearing in an x-ray chest image and a CT image is segmented in each image, features extracted based on the outlines of each segmented nodule in the respective x-ray chest and CT images, and the extracted features from the x-ray chest image and CT images merged as inputs to a common classifier, with the output of the common classifier indicating the likelihood of malignancy.
摘要:
A method, system and computer readable medium for computerized processing of chest images including obtaining a digital first image of a chest (S100); producing a second image which is a mirror image (S300) of the first image; performing image warping on one of the first and second images to produce a warped image (S400) which is registered to the other of the first and second images; and subtracting the warped image from the other image to generate a subtraction image (S600). Another embodiment includes obtaining a digital first image of the chest of a subject; detecting ribcage edges on both sides of the lungs in the first chest image; determining average horizontal locations of the left and right ribcage edges at plural vertical locations; fitting the determined average horizontal locations to a straight line to derive a midline; rotating the chest image so that the midline is vertical; and shifting the rotated image to produce a lateral inclination corrected (S200) second image with the midline centered in the lateral inclination corrected image.
摘要:
A method, system, and computer program product for evaluating an image including an object, including filtering image data derived from the image with a first geometric enhancement filter having magnitude and likelihood filter components so as to produce first filtered image data in which a first geometric pattern is enhanced. Thereafter the filtered image data can be subjected to processing to derive a measure indicative of the presence of the object in the image, including determining a region of interest in the image, extracting at least one feature from the first filtered image data from within the region of interest, and applying the at least one extracted feature to a classifier configured to output the measure indicative of the presence of the object in the image. The image data can also be subjected to filtering with second and/or third geometric filters which enhance different geometric patterns, and which produce respective filtered data which are also processed to derive the measure indicative of the presence of the object.
摘要:
A method to determine whether a candidate abnormality in a medical digital image is an actual abnormality, a system which implements the method, and a computer readable medium which stores program steps to implement the method, wherein the method includes obtaining a medical digital image including a candidate abnormality; obtaining plural first templates and plural second templates respectively corresponding to predetermined abnormalities and predetermined non-abnormalities; comparing the candidate abnormality with the obtained first and second templates to derive cross-correlation values between the candidate abnormality and each of the obtained first and second templates; determining the largest cross-correlation value derived in the comparing step and whether the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates or with the second templates; and determining the candidate abnormality to be an actual abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates and determining the candidate abnormality to be a non-abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the second templates. An actual abnormality is similarly classified as malignant or benign based on further cross-correlation values obtained by comparisons with additional templates corresponding to malignant and benign abnormalities.
摘要:
A method, system and computer readable medium of computerized processing of chest images including obtaining digital first and second images of a chest and detecting rib edges in at least one of the first and second images. The rib edges are detected by correlating points in the at least one of the first and second images to plural rib edge models using a Hough transform to identify approximate rib edges in one of the images, and delineating actual rib edges derived from the identified approximate rib edges using a snake model. The method system and computer readable medium further include deriving the shift values using the actual rib edges and warping one of the first and second images to produce a warped image which is registered to the other of the first and second images based at least in part on the shift values.
摘要:
A method to determine whether a candidate abnormality in a medical digital image is an actual abnormality, a system which implements the method, and a computer readable medium which stores program steps to implement the method, wherein the method includes obtaining a medical digital image including a candidate abnormality; obtaining plural first templates and plural second templates respectively corresponding to predetermined abnormalities and predetermined non-abnormalities; comparing the candidate abnormality with the obtained first and second templates to derive cross-correlation values between the candidate abnormality and each of the obtained first and second templates; determining the largest cross-correlation value derived in the comparing step and whether the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates or with the second templates; and determining the candidate abnormality to be an actual abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates and determining the candidate abnormality to be a non-abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the second templates. An actual abnormality is similarly classified as malignant or benign based on further cross-correlation values obtained by comparisons with additional templates corresponding to malignant and benign abnormalities.
摘要:
A method of producing an image to aid detection of a change in progress of a disease in a patient is described. In the method, a first image of a distribution of a radioisotope in the patient is obtained. A second image of the distribution of the radioisotope in the patient is also obtained. At least one of the first and second images are then normalized (1:140). One of the images is warped to match the other image using a multiple-segment matching method (1:160). The first image is subtracted from the second image to form a subtraction image (1:220). Finally, the resulting subtraction image is displayed.
摘要:
A method, system, and computer program product for determining existence of an abnormality in a medical image, including (1) obtaining volume image data corresponding to the medical image; (2) filtering the volume image data using an enhancement filter to produce a filtered image in which a predetermined pattern is enhanced; (3) detecting, in the filtered image, a first plurality of abnormality candidates using multiple gray-level thresholding; (4) grouping, based on size and local structures, the first plurality of abnormality candidates into a plurality of abnormality classes; (5) removing false positive candidates from each abnormality class based on class-specific image features to produce a second plurality of abnormality candidates; and (6) applying the at least one abnormality to a classifier and classifying each candidate in the second plurality of abnormality candidates as a false positive candidate or an abnormality.
摘要:
A computerized method and system for the radiographic analysis of bone structure and risk of future fracture with or without the measurement of bone mass. Techniques including texture analysis for use in quantitating the bone structure and risk of future fracture. The texture analysis of the bone structure incorporates directionality information, for example in terms of the angular dependence of the RMS variation and first moment of the power spectrum of a ROI in the bony region of interest. The system also includes using dual energy imaging in order to obtain measures of both bone mass and bone structure with one exam. Specific applications are given for the analysis of regions within the vertebral bodies on conventional spine radiographs. Techniques include novel features that characterize the power spectrum of the bone structure and allow extraction of directionality features with which to characterize the spatial distribution and thickness of the bone trabeculae. These features are then merged using artificial neural networks in order to yield a likelihood of risk of future fracture. In addition, a method and system is presented in which dual-energy imaging techniques are used to yield measures of both bone mass and bone structure with one low-dose radiographic examination; thus, making the system desirable for screening (for osteoporosis and risk of future fracture).