System for computerized processing of chest radiographic images
    1.
    发明授权
    System for computerized processing of chest radiographic images 有权
    胸部放射照相图像计算机化处理系统

    公开(公告)号:US07043066B1

    公开(公告)日:2006-05-09

    申请号:US09830562

    申请日:1999-11-05

    IPC分类号: G06K9/00

    摘要: A method, system and computer readable medium for computerized processing of chest images including obtaining a digital first image of a chest (S100); producing a second image which is a mirror image (S300) of the first image; performing image warping on one of the first and second images to produce a warped image (S400) which is registered to the other of the first and second images; and subtracting the warped image from the other image to generate a subtraction image (S600). Another embodiment includes obtaining a digital first image of the chest of a subject; detecting ribcage edges on both sides of the lungs in the first chest image; determining average horizontal locations of the left and right ribcage edges at plural vertical locations; fitting the determined average horizontal locations to a straight line to derive a midline; rotating the chest image so that the midline is vertical; and shifting the rotated image to produce a lateral inclination corrected (S200) second image with the midline centered in the lateral inclination corrected image.

    摘要翻译: 一种用于胸部图像的计算机化处理的方法,系统和计算机可读介质,包括获得胸部的数字第一图像(S100); 产生作为第一图像的镜像(S 300)的第二图像; 在第一和第二图像之一上执行图像扭曲以产生被注册到第一和第二图像中的另一个的翘曲图像(S 400); 以及从所述另一图像中减去所述翘曲图像以生成减法图像(S 600)。 另一实施例包括获得对象胸部的数字第一图像; 在第一胸部图像中检测肺两侧的肋骨边缘; 确定在多个垂直位置处的左和右胸腔边缘的平均水平位置; 将确定的平均水平位置拟合到直线以导出中线; 旋转胸部图像,使中线垂直; 并且移动旋转的图像以产生以横向倾斜校正图像为中心的中线的横向倾斜校正(S 200)第二图像。

    Subtraction technique for computerized detection of small lung nodules in computer tomography images
    2.
    发明授权
    Subtraction technique for computerized detection of small lung nodules in computer tomography images 有权
    计算机断层扫描图像中小肺结节计算机检测的减法技术

    公开(公告)号:US06678399B2

    公开(公告)日:2004-01-13

    申请号:US09990311

    申请日:2001-11-23

    IPC分类号: G06K900

    摘要: A method, system, computer readable medium and apparatus for computerized detection of lung nodules in computer tomography images, by which mask images are created such that subtractions of the mask image from a targeted CT section image reveal or highlight small lung nodules in the target CT section. The mask image is created utilizing the targeted CT section image along with other CT section images generated from the same CT scan. Based on these other section CT images and the targeted CT section image, a mask image can be created that is very similar to the target CT section image, but without the presence of small lung nodules. When the mask image is subtracted from the targeted CT section image, the differences between the mask images and the CT section images reveal small lung nodules. The mask image may be created by linear interpolation or a morphological filtered image.

    摘要翻译: 一种用于计算机化检测计算机断层摄影图像中的肺结节的方法,系统,计算机可读介质和装置,通过该方法创建掩模图像,使得来自目标CT部分图像的掩模图像的减法显示或突出显示目标CT中的小肺结节 部分。 使用目标CT部分图像以及从相同CT扫描生成的其他CT部分图像创建掩模图像。 基于这些其他部分CT图像和目标CT部分图像,可以创建与目标CT部分图像非常相似但不存在小肺结节的掩模图像。 当从目标CT部分图像中减去掩模图像时,掩模图像和CT部分图像之间的差异显示出小的肺结节。 掩模图像可以通过线性内插或形态滤波图像来创建。

    Method of detecting interval changes in chest radiographs utilizing
temporal subtraction combined with automated initial matching of
blurred low resolution images
    3.
    发明授权
    Method of detecting interval changes in chest radiographs utilizing temporal subtraction combined with automated initial matching of blurred low resolution images 失效
    利用时间减法检测胸部X光片段的间隔变化与模糊低分辨率图像的自动初始匹配结合的方法

    公开(公告)号:US5982915A

    公开(公告)日:1999-11-09

    申请号:US900362

    申请日:1997-07-25

    摘要: A method and computerized automated initial image matching technique for enhancing detection of interval changes between temporally subsequent radiographic images via image subtraction. The method includes the steps of digitizing images, normalizing density and contrast in the digital images, correcting for lateral inclination in the digital images, detecting edges of a same feature in each image, converting the images into low resolution matrices, blurring the low resolution images, segmenting portions of the blurred low resolution matrices based on the detected edges, matching the digital images based on a cross-correlation match between the segmented portions, performing non-linear warping to further match Regions of Interest (ROI), and performing image subtraction between the matched digital images. The low resolution matrices are greater than 64.times.64 in size and are produced by averaging. Blurring of the low resolution matrices is performed via a Gaussian filter that removes fine structures in each image such as small vessels, bronchia, etc. The method may be performed by a computer system according to instructions stored on a computer readable medium.

    摘要翻译: 一种方法和计算机化的自动初始图像匹配技术,用于通过图像减法增强时间上随后的放射照相图像之间的间隔变化的检测。 该方法包括数字化图像数字化,标准化数字图像中的浓度和对比度,校正数字图像中的横向倾斜,检测每个图像中相同特征的边缘,将图像转换成低分辨率矩阵,模糊低分辨率图像 基于检测到的边缘对模糊的低分辨率矩阵的部分进行分割,基于分段部分之间的互相关匹配匹配数字图像,执行非线性翘曲以进一步匹配感兴趣区域(ROI),并执行图像相减 在匹配的数字图像之间。 低分辨率矩阵大小大于64x64,并通过平均生成。 通过高斯滤波器执行低分辨率矩阵的模糊,其去除每个图像中的精细结构,例如小血管,支气管等。该方法可以由计算机系统根据存储在计算机可读介质上的指令来执行。

    Method, system and computer readable medium for iterative image warping
prior to temporal subtraction of chest radiographs in the detection of
interval changes
    4.
    发明授权
    Method, system and computer readable medium for iterative image warping prior to temporal subtraction of chest radiographs in the detection of interval changes 失效
    方法,系统和计算机可读介质,用于在间断变化的检测中胸部X光片的时间减法之前的迭代图像翘曲

    公开(公告)号:US6067373A

    公开(公告)日:2000-05-23

    申请号:US53798

    申请日:1998-04-02

    摘要: A method of computerized analysis of temporally sequential digital images, including (a) determining first shift values between pixels of a first digital image and corresponding pixels of a second digital image; (b) warping the second digital image based on the first shift values to obtain a first warped image in which spatial locations of pixels are varied in relation to the first shift values; (c) determining second shift values between pixels of the first digital image and pixels of the first warped image; and (d) warping the first warped image based on the second shift values to obtain a second warped image in which spatial locations of pixels of the first warped image are varied in relation to the second shift values. Additional iterations of image warping are possible to enhance image registration between the first digital image and the warped version of the second digital image, followed by image subtraction of the first digital image and the final warped image to produce a difference image from which diagnosis of temporal changes ensues. Temporal subtraction assists radiologists in the detection of interval changes on chest radiographs, and particularly to overcome severe misregistration errors in the temporally sequential images mainly due to differences in a subject's inclination and/or rotation. In the production of shift values used in image warping, initial shift values are obtained by cross-correlation techniques using a template and search regions of interest. Shift vectors and a histogram of shift vectors in each lung are obtained from initial shift values. The histograms of shift vectors are used in the selection of sets of shift values for smoothing, using two-dimensional fitting and subsequent use of fitted shift values in image warping.

    摘要翻译: 一种对时间顺序数字图像进行计算机化分析的方法,包括:(a)确定第一数字图像的像素与第二数字图像的对应像素之间的第一移位值; (b)基于第一移位值对第二数字图像进行翘曲以获得其中像素的空间位置相对于第一移位值变化的第一翘曲图像; (c)确定第一数字图像的像素与第一翘曲图像的像素之间的第二移位值; 以及(d)基于第二偏移值对第一翘曲图像进行翘曲以获得其中第一翘曲图像的像素的空间位置相对于第二偏移值变化的第二扭曲图像。 图像翘曲的附加迭代可以增强第一数字图像和第二数字图像的翘曲版本之间的图像配准,随后是第一数字图像和最终的扭曲图像的图像相减,以产生从其中诊断时间的差分图像 发生变化。 时间减法协助放射科医生检测胸片间期变化,特别是克服主要由于受试者的倾斜度和/或旋转方面的差异而导致的时间顺序图像中的严重重合错误。 在图像变形中使用的位移值的生成中,通过使用模板和感兴趣的搜索区域的互相关技术来获得初始偏移值。 从初始位移值获得每个肺中的移位向量和移位向量的直方图。 移位矢量的直方图用于选择用于平滑的移位值集合,使用二维拟合和随后在图像扭曲中使用拟合的移位值。

    Process, system and computer readable medium for pulmonary nodule detection using multiple-templates matching
    5.
    发明授权
    Process, system and computer readable medium for pulmonary nodule detection using multiple-templates matching 有权
    使用多模板匹配的肺结核检测的过程,系统和计算机可读介质

    公开(公告)号:US06683973B2

    公开(公告)日:2004-01-27

    申请号:US10231064

    申请日:2002-08-30

    IPC分类号: G06K900

    CPC分类号: G06T7/0012

    摘要: A method to determine whether a candidate abnormality in a medical digital image is an actual abnormality, a system which implements the method, and a computer readable medium which stores program steps to implement the method, wherein the method includes obtaining a medical digital image including a candidate abnormality; obtaining plural first templates and plural second templates respectively corresponding to predetermined abnormalities and predetermined non-abnormalities; comparing the candidate abnormality with the obtained first and second templates to derive cross-correlation values between the candidate abnormality and each of the obtained first and second templates; determining the largest cross-correlation value derived in the comparing step and whether the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates or with the second templates; and determining the candidate abnormality to be an actual abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates and determining the candidate abnormality to be a non-abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the second templates. An actual abnormality is similarly classified as malignant or benign based on further cross-correlation values obtained by comparisons with additional templates corresponding to malignant and benign abnormalities.

    摘要翻译: 一种确定医疗数字图像中的候选异常是否为实际异常的方法,实现该方法的系统以及存储执行该方法的程序步骤的计算机可读介质,其中,所述方法包括:获得包括 候选异常; 分别对应于预定的异常和预定的非异常获得多个第一模板和多个第二模板; 将所述候选异常与所获得的第一和第二模板进行比较,以导出候选异常与获得的第一和第二模板中的每一个之间的互相关值; 确定在比较步骤中导出的最大互相关值,以及通过将候选异常与第一模板或第二模板进行比较来产生最大互相关值; 以及当通过将所述候选异常与所述第一模板进行比较而产生所述最大互相关值时,将所述候选异常判定为实际异常,并且当通过比较产生所述最大互相关值时将所述候选异常确定为非异常 候选异常与第二个模板。 基于通过与对应于恶性和良性异常的附加模板的比较获得的进一步互相关值,实际异常类似地分类为恶性或良性。

    Method, system and computer readable medium for computerized processing of contralateral and temporal subtraction images using elastic matching
    6.
    发明授权
    Method, system and computer readable medium for computerized processing of contralateral and temporal subtraction images using elastic matching 有权
    用于使用弹性匹配计算机化处理对侧和时间减影图像的方法,系统和计算机可读介质

    公开(公告)号:US06594378B1

    公开(公告)日:2003-07-15

    申请号:US09692218

    申请日:2000-10-20

    IPC分类号: G06K900

    摘要: A method, system and computer readable medium of computerized processing of chest images including obtaining digital first and second images of a chest and detecting rib edges in at least one of the first and second images. The rib edges are detected by correlating points in the at least one of the first and second images to plural rib edge models using a Hough transform to identify approximate rib edges in one of the images, and delineating actual rib edges derived from the identified approximate rib edges using a snake model. The method system and computer readable medium further include deriving the shift values using the actual rib edges and warping one of the first and second images to produce a warped image which is registered to the other of the first and second images based at least in part on the shift values.

    摘要翻译: 一种用于胸部图像的计算机化处理的方法,系统和计算机可读介质,包括获得胸部的数字第一和第二图像以及检测第一和第二图像中的至少一个中的肋边缘。 通过使用霍夫变换将第一和第二图像中的至少一个图像中的点与多个肋边缘模型相关联来检测肋边缘,以识别其中一个图像中的近似肋边缘,并且描绘从识别的近似肋导出的实际肋边缘 边缘使用蛇模型。 方法系统和计算机可读介质进一步包括使用实际的肋边缘导出移位值,并使第一和第二图像之一变形,以产生至少部分地基于第一和第二图像被注册到第一和第二图像中的另一个的扭曲图像 移位值。

    Process, system and computer readable medium for pulmonary nodule detection using multiple-templates matching
    7.
    发明授权
    Process, system and computer readable medium for pulmonary nodule detection using multiple-templates matching 失效
    使用多模板匹配的肺结核检测的过程,系统和计算机可读介质

    公开(公告)号:US06470092B1

    公开(公告)日:2002-10-22

    申请号:US09716335

    申请日:2000-11-21

    IPC分类号: G06K900

    CPC分类号: G06T7/0012

    摘要: A method to determine whether a candidate abnormality in a medical digital image is an actual abnormality, a system which implements the method, and a computer readable medium which stores program steps to implement the method, wherein the method includes obtaining a medical digital image including a candidate abnormality; obtaining plural first templates and plural second templates respectively corresponding to predetermined abnormalities and predetermined non-abnormalities; comparing the candidate abnormality with the obtained first and second templates to derive cross-correlation values between the candidate abnormality and each of the obtained first and second templates; determining the largest cross-correlation value derived in the comparing step and whether the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates or with the second templates; and determining the candidate abnormality to be an actual abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the first templates and determining the candidate abnormality to be a non-abnormality when the largest cross-correlation value is produced by comparing the candidate abnormality with the second templates. An actual abnormality is similarly classified as malignant or benign based on further cross-correlation values obtained by comparisons with additional templates corresponding to malignant and benign abnormalities.

    摘要翻译: 一种确定医疗数字图像中的候选异常是否为实际异常的方法,实现该方法的系统以及存储执行该方法的程序步骤的计算机可读介质,其中,所述方法包括:获得包括 候选异常; 分别对应于预定的异常和预定的非异常获得多个第一模板和多个第二模板; 将所述候选异常与所获得的第一和第二模板进行比较,以导出候选异常与获得的第一和第二模板中的每一个之间的互相关值; 确定在比较步骤中导出的最大互相关值,以及通过将候选异常与第一模板或第二模板进行比较来产生最大互相关值; 以及当通过将所述候选异常与所述第一模板进行比较而产生所述最大互相关值时,将所述候选异常判定为实际异常,并且当通过比较产生所述最大互相关值时将所述候选异常确定为非异常 候选异常与第二个模板。 基于通过与对应于恶性和良性异常的附加模板的比较获得的进一步互相关值,实际异常类似地分类为恶性或良性。

    Computer-aided method for automated image feature analysis and diagnosis
of digitized medical images
    8.
    发明授权
    Computer-aided method for automated image feature analysis and diagnosis of digitized medical images 失效
    计算机辅助方法用于数字化医学图像的自动图像特征分析和诊断

    公开(公告)号:US6011862A

    公开(公告)日:2000-01-04

    申请号:US098504

    申请日:1998-06-17

    CPC分类号: G06T7/0012

    摘要: A computerized method for the detection and characterization of disease in an image derived from a chest radiograph, wherein an image in the chest radiograph is processed to determine the ribcage boundary, including lung top edges, right and left ribcage edges, and right and left hemidiaphragm edges. Texture measures including RMS variations of pixel values within regions of interest are converted to relative exposures and corrected for system noise existing in the system used to produce the image. Texture and/or geometric pattern indices are produced. A histogram(s) of the produced index (indices) is produced and values of the histograms) are applied as inputs to a trained artificial neural network, which classifies the image as normal or abnormal. In one embodiment, obviously normal and obviously abnormal images are determined based on the ratio of abnormal regions of interest to the total number of regions of interest in a rule-based method, so that only difficult cases to diagnose are applied to the artificial neural network.

    摘要翻译: 一种用于检测和表征来自胸部X光照片的图像中的疾病的计算机化方法,其中处理胸部X光片中的图像以确定胸腔边界,包括肺顶缘,右和左胸廓边缘,以及右侧和左侧膈肌 边缘。 包括感兴趣区域内的像素值的RMS变化的纹理度量被转换为相对曝光并且对用于产生图像的系统中存在的系统噪声进行校正。 产生纹理和/或几何图案索引。 生成的索引(索引)的直方图(直方图的值)被应用为训练的人造神经网络的输入,其将图像分类为正常或异常。 在一个实施例中,基于基于规则的方法,基于感兴趣的异常区域与感兴趣区域总数的比率来确定明显的正常和明显异常的图像,使得仅将困难的诊断情况应用于人造神经网络 。

    Method and system for localization of inter-rib spaces and automated
lung texture analysis in digital chest radiographs
    9.
    发明授权
    Method and system for localization of inter-rib spaces and automated lung texture analysis in digital chest radiographs 失效
    数字胸片X线片间肋间距定位及自动肺结构分析方法与系统

    公开(公告)号:US4851984A

    公开(公告)日:1989-07-25

    申请号:US81143

    申请日:1987-08-03

    摘要: A method and system for automated analysis of digital radiographic images in which regions-of-interest (ROI's) are first determined, and subsequently analyzed for abnormalities. To locate the ROI's, the outer ribcage and midline boundary locations of the chest image are determined from the digital image data. Vertical profiles are then selected and background trend is then removed from each vertical profile. A shift-variant sinusoidal function is fitted to each vertical profile and ROI's are selected based on the fitted functions. The non-uniform background trend is removed from the original image data of each selected ROI to obtain corrected data. The power spectrum of the lung texture is obtained from the 2D Fourier transform of the corrected data and is filtered by the human visual response. Finally, the root-mean-square (rms) variation, R, and the first moment of the power spectrum, M, are determined as quantitative texture measures for the magnitude and coarseness (or fineness), respectively, of the lung texture.

    摘要翻译: 一种用于自动分析数字放射照相图像的方法和系统,其中首先确定感兴趣区域(ROI),并随后分析异常。 为了定位ROI,从数字图像数据确定胸部图像的外部胸腔和中线边界位置。 然后选择垂直剖面,然后从每个垂直剖面中去除背景趋势。 根据拟合的功能,选择每个垂直剖面的偏移正弦函数,并选择ROI。 从每个所选ROI的原始图像数据中去除不均匀的背景趋势,以获得校正数据。 肺结构的功率谱由校正数据的二维傅里叶变换获得,并通过人类视觉反应过滤。 最后,均方根(rms)变化R和功率谱的第一时刻M分别被确定为肺结构的大小和粗糙度(或细度)的定量纹理测量。

    Method and system for automated classification of distinction between
normal lungs and abnormal lungs with interstitial disease in digital
chest radiographs
    10.
    发明授权
    Method and system for automated classification of distinction between normal lungs and abnormal lungs with interstitial disease in digital chest radiographs 失效
    数字胸片X线片间隙性疾病正常肺和异常肺区分的自动分类方法与系统

    公开(公告)号:US4839807A

    公开(公告)日:1989-06-13

    申请号:US126847

    申请日:1987-11-27

    摘要: A method and system for automated classification of distinction between normal lungs and abnormal lungs with interstitial disease, based on the analysis of predetermined physical texture measures and also on a data base for normal lungs of these texture measures. The texture measures selected are the RMS variation, R, and the first moment of power spectrum, M, for lung texture. These two texture measures are normalized by using the data base for normal lungs. A single texture index is determined from the two normalized texture measures by taking into account the distribution (or the data base) of texture measures obtained from abnormal lungs, in order to facilitate the automated classification of normal and abnormal lungs. A threshold texture index is then chosen for initial selection of "abnormal" regions of interest (ROIs), which contain a large texture index above the threshold level. The selected abnormal ROIs are then subjected to three independent tests for a (1) definitely abnormal singular pattern, (2) localized abnormal pattern for two or more abnormal clustered ROIs, and (3) diffuse abnormal pattern for more than four abnormal ROIs distributed through the lung. A chest image containing any one of these abnormal patterns is classified as showing an abnormal lung with interstitial disease.

    摘要翻译: 基于对预定的物理纹理测量的分析,以及这些纹理测量的正常肺的数据库,自动分类正常肺和具有间质性疾病的异常肺之间的区别的方法和系统。 所选择的纹理度量是RMS变化,R和功率谱的第一时刻M,用于肺结构。 通过使用正常肺的数据库对这两种纹理测量进行归一化。 通过考虑从异常肺获得的纹理测量的分布(或数据库),从两个归一化纹理测量中确定单个纹理指数,以便于正常和异常肺的自动分类。 然后选择阈值纹理索引用于初始选择感兴趣的“异常”区域(ROI),其包含高于阈值水平的大的纹理指数。 然后对所选择的异常ROI进行三(1)个绝对异常奇异模式的独立测试,(2)两个或更多个异常聚类ROI的局部异常模式,以及(3)分布在四个异常ROI中的扩散异常模式 肺。 含有这些异常模式中的任何一种的胸部图像被分类为显示具有间质性疾病的异常肺。