Abstract:
The passive infrared detector contains a heat-sensitive sensor and a focusing device for focusing thermal rays incident on the detector from the room under surveillance onto the sensor. The focusing device has focusing elements for surveillance regions having different positions in the room under surveillance. Each focusing element comprises a number of sub-elements, with the result that the surveillance regions are split up vertically into subzones having slightly different elevation. In a majority of the surveillance regions, the subzones overlap at most only slightly. Human being and animals are distinguished by the amplitude of the sensor signal which is proportional to the number of subzones interrupted by the object in the room under surveillance. The number of sub-elements and correspondingly the number of subzones increases with decreasing radial distance of the respective surveillance region from the detector.
Abstract:
An ICR ion trap comprises electrically conductive side plates (1) extending in parallel to one axis (Z), and electrically conductive end plates (5,6) extending perpendicularly to the said axis (Z). Additional electrode plates (8,9) are arranged at a certain spacing from the said end plates (5,6) and can be supplied with trapping potentials of a polarity opposite to the polarity of the potentials applied to the said end plates so that an outer space is defined in which electrodes of opposite sign are trapped. Following analysis and elimination of the ions contained in the inner space, the ions of opposite sign can be trapped in the inner space for subsequent analysis. The arrangement provides also the possibility to observe recombination reactions between ions of different signs.
Abstract:
In a procedure for recording ion-cyclotron resonance spectra or an apparatus for carrying out the procedure, gaseous ions of a sample substance in an ultrahigh vacuum are simultaneously exposed to a constant magnetic field B.sub.O and to a high frequency field which is perpendicular to it, with resonances being excited when the frequency of the alternating field corresponds to the rotational frequency of the ions which move on circular paths in the constant magnetic field. To produce gaseous ions of the sample substance, the latter is bombarded with additional gaseous, high-energy ions of a primary substance. The primary ions are produced in the measuring cell by means of an electron beam and excited to a high energy level by means of ion-cyclotron resonance (FIG. 2).
Abstract:
In an infrared intrusion detector, a focusing mirror reflects incident infrared radiation of interest onto a pyroelectric sensor element. To prevent extraneous radiation from reaching the sensor element, the mirror has a reflective layer for reflecting infrared radiation of interest, and an absorptive layer disposed behind the reflective layer for absorbing extraneous radiation which has passed through the reflective layer. Infrared radiation of interest includes human body thermal radiation, and extraneous radiation includes the visible spectrum. Doped indium-tin oxide (ITO) is preferred for the reflective layer.
Abstract:
An ICR ion trap comprises electrically conductive side plates (1) extending in parallel to one axis (Z), and electrically conductive end plates (5,6) extending perpendicularly to the said axis (Z). Additional electrode plates (8,9) are arranged at a certain spacing from the said end plates (5,6) and can be supplied with trapping potentials of a polarity opposite to the polarity of the potentials applied to the said end plates so that an outer space is defined in which electrodes of opposite sign are trapped. Following analysis and elimination of the ions contained in the inner space, the ions of opposite sign can be trapped in the inner space for subsequent analysis. The arrangement provides also the possibility to observe recombination reactions between ions of different signs.
Abstract:
For eliminating undesirable charged low-mass particles from the measuring cell of an ion cyclotron resonance spectrometer the electrodes normally required for exciting the cyclotron movement are supplied with an rf voltage having a frequency twice as high as the resonance frequency of the trapping oscillation of the charged particles between the trapping electrodes provided perpendicularly to the homogenous magnetic field of the spectrometer. In this manner, the low-mass charged particles are excited to perform trapping oscillations in the direction of the homogenous magnetic field which cause the charged particles to overcome the trapping potentials and, thus, to be eliminated.
Abstract:
A passive infrared intrusion detector for the detection of infrared body radiation includes a sabotage detector, in particular for detecting spraying of the entrance window of the intrusion detector. The sabotage detector includes a light source, a corresponding light sensor, and an optical diffraction grating structure on the outside of the entrance window. The light source and the light sensor can be on the same or on opposite sides of the entrance window. By first- or higher-order diffraction, light from the light source is focused onto the sensor, and a resulting electrical signal from the sensor is evaluated by an evaluation circuit. In case of sabotage, the focusing effect of the optical diffraction grating structure vanishes, so that the light intensity at the detector is reduced. The drop in light intensity triggers a sabotage alarm signal.
Abstract:
A method of operating an ICR spectrometer comprising a measuring cell (1) having a plurality of side walls (3, 4) designed as rf electrodes and arranged symmetrically to an axis (2) extending in parallel to the field direction of a magnetic field, and further electrically insulated trapping electrodes (5, 6) arranged on both sides of the cell, viewed in the direction of the axis, which trapping electrodes can be supplied with trapping potentials of the polarity of the ions under examination in order to prevent, to a large extent, the ions from leaving the measuring cell (1) in the direction of the axis, provides that, in order to minimize the components of the electric rf field directed in parallel to the axis, which act upon the ions in the measuring cell (1), additional electric rf signals are applied to at least one said trapping electrode (5) on both sides of the said measuring cell (1). One thereby obtains in the measuring cell (1) a behavior of the electric rf field lines corresponding approximately to that which would be obtained, theoretically, in a measuring cell (1) of infinite axial length. This prevents axial acclerations of the ions in the measuring cell (1) by the electric rf field, which normally result in these ions being lost for the measuring process.
Abstract:
In ion cyclotron resonance spectroscopy, a gaseous sample substance contained in a measuring cell and exposed to a constant magnetic field therein is ionized and is subsequently subjected to an electric HF measuring field oriented orthogonally to the magnetic field. The frequencies of the electric field encompass the frequencies of the cyclotron resonance frequencies of the ions of the sample substance. Sample substances often include ions which are of no interest to the material under study but which produce very strong lines that can be highly disturbing because of the limited dynamics of the spectrometer and, especially, the relatively low concentration of ions in the measuring cell which is necessary to prevent space charge effects. To avoid such disturbances, the sample substance is subjected to a HF selection field, prior to applying the HF measuring field, which selection field includes the cyclotron resonance frequency of at least one of the undesired ion species, for a period of time until the orbital radii of the ions of this kind have reached a magnitude at which the ions collide with the walls of the measuring cell and are thereby ejected. By repeating the process of ionization and elimination of the undesired ions, the concentration of the desired ions in the cell can be increased up to the permissible maximum value, resulting in a substantial increase in the sensitivity of the spectrometer.
Abstract:
An infrared intrusion detector uses infrared-sensitive sensors with pyroelectric sensor elements for detecting infrared radiation from a spatial region to be monitored. Infrared radiation passes through an entrance window and reaches the sensor elements via focusing mirrors. Extraneous radiation, outside the useful radiation band, is eliminated by filtering at the entrance window and by an optical transmission filter, and by scattering at suitable rough surfaces of the focusing mirrors. As a result, the infrared intrusion detector is less sensitive to extraneous radiation and less likely to produce false alarms.