摘要:
Polyarylene ether for optical communications, expressed by the formula 1: ##STR1## The polyarylene ether has excellent resistance to heat and film processing properties and the light absorption loss in the wavelength range for optical communications is low. Also, by controlling the copolymerization ratio of a monomer whose hydrogen of C--H bond is substituted by F and a monomer whose hydrogen of C--H bond is substituted by Cl, the refractive index of the polymer can be adjusted to a level suitable for an optical material used for optical communications.
摘要:
An optical waveguide device for loss absorption, and a fabrication method thereof, are provided. The optical waveguide device for loss absorption includes: a substrate of a predetermined material; a lower cladding formed on the substrate; an optical waveguide formed on the lower cladding, and formed of a material having a refractive index greater than a refractive index of the lower cladding; an upper cladding formed so as to completely cover the optical waveguide; and an absorption layer formed of a material having refractive index greater than a refractive index of the upper cladding, and formed on the upper cladding to a thickness which can absorb a reflected or radiated optical signal. As described above, an absorption layer capable of absorbing light is formed in the waveguide device upon fabricating the optical waveguide, thus minimizing or removing loss due to reflection and radiation of an optical signal.
摘要:
A hybrid optical waveguide having linear and curved sections through which optical signals pass, includes: a planar substrate layer; a lower cladding layer formed of a material having optical transparency in a predetermined range of optical communication wavelengths, on the planar substrate layer; a core layer formed on the lower cladding layer where the optical waveguide is formed, the waveguide constituted of the linear section formed of a first optical polymer having a higher refractive index than the lower cladding layer and the curved section formed of a second optical polymer having a higher refractive index than the first optical polymer; and an upper cladding layer formed of a material having a lower refractive index than the first and the second optical polymers, surrounding the waveguide core layer. The optical waveguide having the linear and curved sections has reduced traveling losses and optical fiber coupling losses, and minimizes the size of the waveguide cross-section.