Abstract:
The temperature dependency of center wavelength of AWG is compensated by adjusting optical input position by cutting interface between input slab waveguide of AWG and stripe waveguide circuit connected to input slab, followed by attaching lateral sliding rod which has larger Coefficient of Thermal Expansion than chip substrate. These cut-elements are passively re-aligned on the top surface of the alignment base substrate. The cut-element of AWG main body is adhered on alignment base substrate, and the cut-element of the strip waveguide circuit connected to the input slab is attached to the lateral sliding rod. The gap between the facets of re-aligned two cut-elements is maintained by inserting thin film followed by filling gap-fill material with no flowing nature to minimize degradation of optical characteristics and maintain free lateral movement between these two cut-elements.
Abstract:
The present invention relates to a process for preparing thiomethylphenol derivatives, and particularly to a simple process of preparing thiophenol derivatives by performing a reaction of a phenol derivative, a mercaptan derivative and paraformaldehyde in a solvent in the presence of a given amount of heterocyclic amine base and acids, thereby capable of maintaining a mild reaction condition and providing thiomethylphenol derivatives with an improved discoloration by purification using acids.
Abstract:
A metal coated optical fiber array module including a metal coated optical fiber array, an arranging substrate having arranging grooves for loading the optical fiber array, wherein a metal is coated on the upper surface including the arranging grooves and the optical fiber array loaded into the arranging grooves is united therewith through the medium of the metal, and a cover for protecting and fixing the optical fiber array loaded into the arranging grooves of the arranging substrate. It is preferable that the optical fiber array module further includes a planar substrate having holes into which the optical fiber array is to be inserted, wherein the optical fiber array loaded on the arranging substrate is inserted into the holes and united with the arranging substrate. After the optical fibers are loaded, the ends thereof are easily polished. When the optical fibers are attached to a waveguide device, the ends of the arrayed optical fibers are enlarged to increase an attachment strength at the contact surface. The axes of the optical fibers are prevented from being tilted, by ultraviolet (UV) irradiation upon loading the optical fibers. Also, when the optical waveguide device is attached to a multi-core optical fiber, a contact surface is widened, thus improving environmental characteristics and reliability of a device package upon connection of the optical fibers.
Abstract:
A fiber array module using soldering, and a fabrication method thereof, in which the method includes the steps of: forming holes into which optical fibers can be inserted, in a silicon wafer substrate or a ceramic substrate at predetermined intervals, forming a metal layer on the walls of the holes and the entire surface of the substrate, to allow walls of the holes and an entire surface of the substrate to be plated with a solder alloy material; plating the walls of the holes and the entire surface of the substrate with the solder alloy material; inserting metal-coated optical fibers into the holes plated with the solder alloy material; positioning the optical fibers at the centers of the holes using the surface tension of the solder alloy material, by heating the resultant structure; fixing the optical fibers, inserted into the holes of the substrate, to the substrate by pouring epoxy curable by heat or ultraviolet light thereon, to fabricate a fiber array module capable of being accurately attached to an optical waveguide device, and polishing an end of the optical fiber module formed of optical fibers protruding through the holes, to provide optical luminance. Accordingly, the environmental characteristics and reliability of a device package are improved upon the connection of the optical fibers. Also, the fiber array module is simply manufactured, and the ends of loaded optical fibers are easily polished, thus fabricating an inexpensive connection module. Furthermore, the optical fibers are accurately arrayed by self-alignment using the surface tension of the solder material.
Abstract:
An apparatus and a method for combining an optical waveguide and optical fibers are provided. The apparatus includes an apparatus for combining optical fibers with an optical waveguide device, including a guide rail portion for alignment including guide rails for alignment spaced apart from each other by a predetermined distance, on a flat substrate, an optical fiber array portion put on the guide rail portion for alignment when the optical fibers are combined with the optical waveguide device, including an array of grooves for arranging the optical fibers spaced apart from each other by a predetermined distance in an array pattern, and including guide grooves for alignment having a concavo-convex relationship with the guide rail portion for alignment, and an optical waveguide device chip put on the guide rail portion when the optical fibers are combined with the optical waveguide, including the optical waveguide connected to the optical fibers of the optical fiber array portion, and including guide grooves for alignment spaced apart from each other by the same distance as that by which the rails of the guide rail portion are spaced apart from each other and having a concavo-convex relationship with the guide rail portion for alignment, to the outside of an optical waveguide area in which the cores of the optical fibers of the optical fiber array portion respectively coincide with those of the optical waveguide. According to the present invention, a light source and a photodetector (required for active alignment) are not necessary. A complicated alignment process of performing an alignment with respect to an alignment axis having six degrees of freedom with submicron precision is not necessary. Also, it is possible to save time and money when attaching the optical fibers to the optical waveguide device chip.
Abstract:
Provided are novel thio compounds and a method for preparing the same. More particularly, there is provided a novel thio compound prepared by reacting an alkylation product of p-cresol and dicyclopentadiene with mercaptan and paraformaldehyde. Unlike existing antioxidants such as 2,6-di-t-butyl-4-methylphenol (BHT) being harmful to the human body due to the high volatility, the novel thio compounds of the present invention, which have the low volatility because of their high molecular weight, give no harm to the human body. Further, with excellent performances, they are suitable to replace the existing antioxidants.
Abstract:
The present invention relates to a process for preparing thiomethylphenol derivatives, and particularly to a simple process of preparing thiophenol derivatives by performing a reaction of a phenol derivative, a mercaptan derivative and paraformaldehyde in a solvent in the presence of a given amount of heterocyclic amine base and acids, thereby capable of maintaining a mild reaction condition and providing thiomethylphenol derivatives with an improved discoloration by purification using acids.
Abstract:
Center wavelength of AWG is shifted due to the temperature variation. This invention described the method to compensate temperature dependency of center wavelength by adjusting optical input position passively by cutting the interface between the input slap waveguide (3) of AWG and the stripe waveguide circuit (1) connected to the input slab on a AWG chip, followed by attaching the lateral sliding rod (10) which has the larger CTE (Coefficient of Thermal Expansion) than AWG chip substrate (6). These cut-elements are passively re-aligned on the top surface of the alignment base substrate (7). At this process, the cut-element (6b) of AWG main body is firmly adhered on the alignment base substrate (7), and the cut-element (6a) of the stripe waveguide circuit (1) connected to the input slab is attached to the lateral sliding rod (10), which enables the position movement upon the temperature variation. The gap (16) between the facets (12a, 12b) of re-aligned two cut-elements (6a, 6b) is maintained by inserting thin film (8) followed by filling gap-fill material (9) with no flowing nature in order to minimize the degradation of the optical characteristics as well as to maintain the free lateral movement between these two cut-elements (6a, 6b).
Abstract:
A safety razor is disclosed. In this razor, the head of the handle allows a blade cartridge to move on the curved skin while being smoothly, sensitively and elastically rotated around the hinged points. The razor is also provided with separate elastic biasing members for respectively allowing the desired elastic swinging action of the blade cartridge relative to the head and allowing an easy attachment or removal of the blade cartridge relative to the head. In the safety razor, the hinged points of the cartridge are positioned at the front end of the head at a position below the central axis of the cartridge, thus allowing the cartridge to be rotatable backward around the hinged points at an enlarged swing angle when a user unconsciously and excessively presses the cartridge against the skin while shaving. This razor thus safely and cleanly shaves the face while maintaining a uniform skin contact area and uniform skin contact pressure without damaging or cutting the skin regardless of a variety of cutting resistances applied to the cartridge due to various hair densities and various curvatures of the face.
Abstract:
A method for fabricating low-loss optically active device having an optical waveguide constructed of an optical waveguide core region (non-linear core region) necessitating the non-linear effect when waveguiding an optical signal, and an optical waveguide core region (linear core region) not necessitating the non-linear effect, the method includes method for fabricating an optically active device having an optical waveguide constructed of an optical waveguide core region (non-linear core region) necessitating the non-linear effect when waveguiding an optical signal, and an optical waveguide core region (linear core region) not necessitating the non-linear effect, the method includes the steps of: forming a lower clad layer having a refractive index lower than the material of the waveguide core regions and optical transparency on a substrate, forming a linear optical polymer layer on the lower clad layer by coating linear optical polymer having a refractive index lower than the material of the lower clad layer, forming a first metal layer at a region on the lower clad layer, other than the regions where the waveguide is to be disposed, etching a linear optical polymer layer without the first metal layer formed thereon, forming a non-linear optical polymer layer on the substrate having the non-linear core region, removing the non-linear optical polymer layer stacked to be higher than the waveguide core regions, removing the first metal layer, forming a second metal layer on the waveguide from which the first metal layer is removed, removing the linear optical polymer of the non-second metal layer portion, and forming an upper clad layer on the substrate with the linear optical polymer using a material having a refractive index lower than the waveguide core regions and optical transparency. The waveguide is formed using non-linear optical polymer only at the region where the non-linear effect such as optical modulation or optical switching occurs, and is formed using linear optical polymer at the remaining regions, thereby minimizing the overall waveguiding loss of the waveguide.