Abstract:
A display device that includes an underlying excitation source, a converting layer, and an optical filter layer. The underlying excitation source emits light in a spatial pattern that may or may not be altered in time and has a short wavelength capable of being at least partially absorbed by the overlying converting layer. The converting layer can be a contiguous film or pixels of quantum dots that can be dispersed in a matrix material. This converting layer is capable of absorbing at least a portion of the wavelength(s) of the light from the underlying excitation source and emitting light at one or more different wavelengths. The optical filter layer prevents the residual light from the excitation source that was not absorbed by the converting layer from being emitted by the display device.
Abstract:
A white light light emitting diode (LED) formed by depositing an LED chip that emits light at a first wavelength and forming a semiconductor nanocrystal complex. The semiconductor nanocrystal complex absorbs at least a portion of the light emitted by the LED chip and emits light at a second wavelength. The semiconductor nanocrystal complex and a powdered phosphor are deposited over the LED chip. The powdered phosphor also absorbs a portion of the light emitted by the LED chip and emits light at a third wavelength. The semiconductor nanocrystal complex is selected to provide a color of the spectrum that is lacking from the combined output of phosphor/LED chip combination, to improve a Color Rating Index (CRI) value and to provide a “warmer” light. The semiconductor nanocrystal complex and the powdered phosphor can be mixed into the same matrix material or into separate matrix materials and/or deposited as separate layers.
Abstract:
Powdered quantum dots that can be dispersed into a silicone layer are provided. The powdered quantum dots are a plurality of quantum dot particles, preferably on the micron or nanometer scale. The powdered quantum dots can include quantum dot-dielectric particle complexes or quantum dot-crosslinked silane complexes. The powdered quantum dots can included quantum dot particles coated with a dielectric layer.
Abstract:
Powdered quantum dots that can be dispersed into a silicone layer are provided. The powdered quantum dots are a plurality of quantum dot particles, preferably on the micron or nanometer scale. The powdered quantum dots can include quantum dot-dielectric particle complexes or quantum dot-crosslinked silane complexes. The powdered quantum dots can included quantum dot particles coated with a dielectric layer.
Abstract:
A high-refractive index material that includes semiconductor nanocrystal compositions. The high-refractive index material has at least one semiconductor nanocrystal composition incorporated in a matrix material and has a refractive index greater than 1.5. The semiconductor nanocrystal composition has a semiconductor nanocrystal core of a II-VI, III-V, or IV-VI semiconductor material. A method of making a high-refractive index material includes incorporating, at least one semiconductor nanocrystal composition in a matrix material. An application of a high-refractive index material includes incorporating at least one semiconductor nanocrystal composition in a matrix material to form the high-refractive index material and depositing the high-refractive index material on the surface of a lighting device.
Abstract:
A water-stable semiconductor nanocrystal complex and methods of making the same are provided. The water-stable semiconductor nanocrystal complex includes a semiconductor nanocrystal composition, a surfactant layer, and an outer layer. The outer layer and/or the surfactant layer can be cross-linked.