摘要:
An image encoding device includes: a first encoding unit for encoding image data using multiple different quantizing matrices to calculate a generated code amount for each of the quantizing matrices; a code amount control unit for calculating an identification value that makes it identifiable from the generated code amount calculated at the first encoding unit whether or not there are many high-frequency components, selecting a first quantizing matrix for reducing high-frequency components at the time of this identification value distinguishing that the number of high-frequency components is greater than a threshold, and selecting a second quantizing matrix that reduces a smaller number of high-frequency components than the first quantizing matrix at the time of the identification value distinguishing that the number of high-frequency components is not greater than the threshold; and a second encoding unit for encoding the image data using the quantizing matrix selected at the code amount control unit.
摘要:
The present invention is directed to an image information decoding apparatus adapted for performing intra-image decoding based on resolution of color components and color space of an input image signal. An intra prediction unit serves to adaptively change block size in generating a prediction image based on a chroma format signal indicating whether resolution of color components is one of 4:2:0 format, 4:2:2 format, and 4:4:4 format, and a color space signal indicating whether color space is one of YCbCr, RGB, and XYZ. An inverse orthogonal transform unit and an inverse quantization unit serve to also change orthogonal transform technique and quantization technique in accordance with the chroma format signal and the color space signal. A decoding unit decodes the chroma format signal and the color space signal to generate a prediction image corresponding to the chroma format signal and the color space signal.
摘要:
The present invention is directed to an image information encoding apparatus adapted for performing intra-image encoding based on resolution of color components and color space of an input image signal. An intra prediction unit serves to adaptively change block size in generating a prediction image based on a chroma format signal indicating whether resolution of color components is one of 4:2:0 format, 4:2:2 format, and 4:4:4 format, and a color space signal indicating whether color space is one of YCbCr, RGB, and XYZ. An inverse orthogonal transform unit and an inverse quantization unit serve to also change orthogonal transform technique and quantization technique in accordance with the chroma format signal and the color space signal. An encoding unit encodes the chroma format signal and the color space signal to generate a prediction image corresponding to the chroma format signal and the color space signal.
摘要:
The present invention is directed to an image information encoding apparatus adapted for performing intra-image encoding based on resolution of color components and color space of an input image signal. An intra prediction unit serves to adaptively change block size in generating a prediction image based on a chroma format signal indicating whether resolution of color components is one of 4:2:0 format, 4:2:2 format, and 4:4:4 format, and a color space signal indicating whether color space is one of YCbCr, RGB, and XYZ. An inverse orthogonal transform unit and an inverse quantization unit serve to also change orthogonal transform technique and quantization technique in accordance with the chroma format signal and the color space signal. An encoding unit encodes the chroma format signal and the color space signal to generate a prediction image corresponding to the chroma format signal and the color space signal.
摘要:
The present invention is directed to an image information decoding apparatus adapted for performing intra-image decoding based on resolution of color components and color space of an input image signal. An intra prediction unit serves to adaptively change block size in generating a prediction image based on a chroma format signal indicating whether resolution of color components is one of 4:2:0 format, 4:2:2 format, and 4:4:4 format, and a color space signal indicating whether color space is one of YCbCr, RGB, and XYZ. An inverse orthogonal transform unit and an inverse quantization unit serve to also change orthogonal transform technique and quantization technique in accordance with the chroma format signal and the color space signal. A decoding unit decodes the chroma format signal and the color space signal to generate a prediction image corresponding to the chroma format signal and the color space signal.
摘要:
An image encoding device includes: a first encoding unit for calculating a generated code amount by encoding image data for each GOP (Group of Picture); a code amount control unit for setting quantization information for realizing a target generated code amount based on the generated code amount; a quantization information distinguishing unit for calculating a DCT (Discrete Cosine Transform) coefficient, and distinguishing quantization information that minimizes the summation for each picture of remainders when performing division of the DCT coefficient, as quantization information used for performing the last encoding; a picture-type setting unit for setting a picture type to the image data for each GOP, and when this set picture type differs from the picture type of the distinguished quantization information, matching the picture types by controlling the settings of the subsequent picture types; and a second encoding unit for encoding the image data based on the set picture type.
摘要:
An image encoding device includes: a first encoding unit for encoding image data using a fixed-quantizing parameter to calculate a generated code amount; a second encoding unit for encoding the image data using multiple different quantizing parameters for each of the quantizing parameters as the image data of an intra picture to calculate a generated code amount; a code amount control unit for determining a quantizing parameter by predicting a quantizing parameter for realizing a target generated code amount, and a generated code amount when employing this quantizing parameter based on the generated code amount calculated at the first encoding unit, and correcting this predicted generated code amount according to the generated code amount calculated at the second encoding unit so as to realize the target generated code amount; and a third encoding unit for encoding the image data using the quantizing parameter determined at the code amount control unit.
摘要:
An image encoding device includes: a first encoding unit for calculating a generated code amount when encoding image data using a fixed quantizing parameter, and block distinction regarding whether a macro block is a block for performing temporal prediction or block for performing spatial prediction regarding a picture for predicting a temporal direction; a code amount control unit for setting the offset amount of a quantizing parameter so as to have great code amount to be assigned to a picture including many images to be referenced according to a percentage between the block for temporal prediction, and the block for spatial prediction based on the results of the block distinction, and determining a quantizing parameter based on the generated code amount calculated at the first encoding unit; and a second encoding unit for encoding the image data using the offset quantizing parameter for realizing a target generated code amount.