Abstract:
Processes and systems for isolating manganese (Mn), cobalt (Co), nickel (Ni) as a purified co-precipitated product or alternatively independent products, from a lithium-ion battery waste stream like black mass are provided. The process may include processing black mass in an extraction process that comprises mixing the black mass with a source of iron (III) ions and a source of iron (II) ions in an aqueous liquid to extract Mn, Ni, and Co and the at least one impurity element to form a stream, then filtering solids including the graphite and iron hydroxide from the stream that then comprises Mn, Ni, and Co and at least one impurity element. The stream may be further purified by removing the at least one impurity element and Mn, Ni, and Co can be separated from the stream to form one or more recovered products comprising one or more of Mn, Ni, and C0.
Abstract:
The present invention relates to a method of recovering acid and a platinum group metal from a leaching solution of a spent catalyst, more particularly, to a method of recovering acid and a platinum group metal from a leaching solution of a spent catalyst, the method including: filtering a leaching solution of a spent catalyst, providing the filtered leaching solution into a concentration chamber, and heating the filtered leaching solution to recover acid included in the leaching solution; providing a concentrated solution of the leaching solution into a substitution chamber after recovering the acid, and adding a metal for a substitution reaction; and cleaning a solid, which is separated by solid-liquid separation after the substitution reaction, with acid and recovering the platinum group metal.
Abstract:
A method for in situ solution mining of a mineral from an underground evaporite stratum using a set of wells in fluid communication with at least one mineral cavity with some wells operated in solvent injection mode and other wells operated in brine production mode and optionally with some inactive wells, comprising switching the operation mode of one or more wells. The evaporite mineral preferably comprises trona. The at least one cavity may be formed by directionally drilled uncased boreholes or by lithological displacement of the evaporite stratum at a weak interface with an underlying insoluble stratum by application of a lifting hydraulic pressure to create an interfacial gap. The extracted brine can be processed to make valuable products such as soda ash and/or any derivatives thereof. This method can provide more uniform dissolution of mineral in the cavity, minimize flow channeling, minimize sodium bicarbonate blinding for solution mining of incongruent trona ore, and/or may avoid uneven deposit of insolubles.
Abstract:
The present invention relates to a method for recovery of rare earth metals (REM) from diluted aqueous acidic solutions comprising steps of liquid-phase extraction of REM into an organic phase and re-extraction of REM from the organic phase. The re-extraction is carried out by precipitation of REM as a solid phase in the form of a poorly soluble salt of a strong acid (pKa
Abstract:
A method of producing a metal carbonate from an ultramafic rock material is provided. The method includes providing an ultramafic rock material comprising a metal silicate; reacting the ultramafic rock material with an acid to form a mixture comprising a salt of the metal; contacting the mixture comprising a salt of the metal with oxygen so as to aerate impurities in the mixture and/or to remove residual acid from the mixture; heating the resultant mixture to decompose the salt of the metal to form metal oxide; and reacting the metal oxide with aqueous ammonium carbonate to obtain the metal carbonate. A system for producing a metal carbonate from ultramafic rock material is also provided.
Abstract:
Methods to recover or separate cesium formate or rubidium formate or both from a mixed alkali metal formate blend are described. One method involves adding cesium sulfate or rubidium sulfate to the mixed alkali metal formate blend in order to preferentially precipitate potassium sulfate from the mixed alkali metal formate blend. Another method involves adding cesium carbonate or cesium bicarbonate or both to preferentially precipitate potassium carbonate/bicarbonate and/or other non-cesium or non-rubidium metals from the mixed alkali metal blend. Further optional steps are also described. Still one other method involves converting cesium sulfate to cesium hydroxide.
Abstract:
Methods for recovering gold from gold-bearing materials are provided. The methods rely upon on the self-assembly of KAuBr4 and α-cyclodextrin (α-CD) in aqueous solution to form a co-precipitate, a 1:2 complex, KAuBr4•(α-CD)2 (“α•Br”), either alone or in an extended {[K(OH2)6][AuBr4]⊂(α-CD)2}n chain superstructure (FIG. 1). The co-precipitation of α•Br is selective for gold, even in the presence of other metals, including other square-planar noble metals. The method enables one to isolate gold from gold-bearing materials from diverse sources, as further described.
Abstract:
The present disclosure relates to processes for recovering rare earth elements from various materials. The processes can comprise leaching the at least one material with at least one acid so as to obtain a leachate comprising at least one metal ion and at least one rare earth element, and a solid, and separating the leachate from the solid. The processes can also comprise substantially selectively removing at least one of the at least one metal ion from the leachate and optionally obtaining a precipitate. The processes can also comprise substantially selectively removing the at least one rare earth element from the leachate and/or the precipitate.
Abstract:
A method for in situ solution mining of a mineral from an underground evaporite stratum using a set of wells in fluid communication with at least one mineral cavity with some wells operated in solvent injection mode and other wells operated in brine production mode and optionally with some inactive wells, comprising switching the operation mode of one or more wells. The evaporite mineral preferably comprises trona. The at least one cavity may be formed by directionally drilled uncased boreholes or by lithological displacement of the evaporite stratum at a weak interface with an underlying insoluble stratum by application of a lifting hydraulic pressure to create an interfacial gap. The extracted brine can be processed to make valuable products such as soda ash and/or any derivatives thereof. This method can provide more uniform dissolution of mineral in the cavity, minimize flow channeling, minimize sodium bicarbonate blinding for solution mining of incongruent trona ore, and/or may avoid uneven deposit of insolubles.
Abstract:
A purification method of zinc sulfate leachate is provided. The purification method of zinc sulfate leachate comprises contacting the zinc sulfate leachate with a zinc powder under a non-oxidizing atmosphere to form solution containing a precipitate of impurity metal; and removing the precipitate of impurity metal from the solution and getting a purified zinc sulfate leachate. A purified zinc sulfate leachate may be prepared with a higher purification efficiency and a lower energy consumption than prior art.