Abstract:
Certain aspects and features of the present disclosure relate to analysis of physical media copies of wellbore schematics and the generation of corresponding digital wellbore schematics. Wellbore data may be analyzed by a wellbore schematic analysis tool to produce a structured data file containing information harvesting from a physical media copy of a wellbore schematic. This information may be compared to data from other wellbores and or may be used to generate a new digital wellbore schematic.
Abstract:
Building models and predicting operational outcomes of a drilling operation. At least some of the illustrative embodiments are methods including: gathering sensor data regarding offset wells and context data regarding the offset wells, and placing the sensor data and context data into a data store; creating a reduced data set by identifying a correlation between data in the data store and an operational outcome in a drilling operation; creating a model based on the reduced data set; and predicting the operational outcome based on the model.
Abstract:
Certain aspects and features of the present disclosure relate to analysis of physical media copies of wellbore schematics and the generation of corresponding digital wellbore schematics. Wellbore data may be analyzed by a wellbore schematic analysis tool to produce a structured data file containing information harvesting from a physical media copy of a wellbore schematic. This information may be compared to data from other wellbores and or may be used to generate a new digital wellbore schematic.
Abstract:
A system and method to plan and represent well activities using bar charts, while also providing the option to select specific time periods in which to represent the data and/or to compare the data with other wells. Additionally, the system provides the ability to chart a well activity plan and to edit an existing plan.
Abstract:
Systems, methods, and computer-readable media are described for intelligent, real-time monitoring and managing of changes in oilfield equilibrium to optimize production of desired hydrocarbons and economic viability of the field. In some examples, a method can involve generating, based on a topology of a field of wells, a respective graph for the wells, each respective graph including computing devices coupled with one or more sensors and/or actuators. The method can involve collecting, via the computing devices, respective parameters associated with one or more computing devices, sensors, actuators, and/or models, and identifying a measured state associated with the computing devices, sensors, actuators, and/or models. Further, the method can involve automatically generating, based on the respective graph and respective parameters, a decision tree for the measured state, and determining, based on the decision tree, an automated adjustment for modifying production of hydrocarbons and/or an economic parameter of the hydrocarbon production.
Abstract:
A system and method to plan and represent well activities using bar charts, while also providing the option to select specific time periods in which to represent the data and/or to compare the data with other wells. Additionally, the system provides the ability to chart a well activity plan and to edit an existing plan.
Abstract:
Building models and predicting operational outcomes of a drilling operation. At least some of the illustrative embodiments are methods including: gathering sensor data regarding offset wells and context data regarding the offset wells, and placing the sensor data and context data into a data store; creating a reduced data set by identifying a correlation between data in the data store and an operational outcome in a drilling operation; creating a model based on the reduced data set; and predicting the operational outcome based on the model.