Abstract:
A junction box assembly is provided with a conductive boss having a first contact surface and a second contact surface spaced apart from the first contact surface. A pair of threaded conductive studs each extends from one of the contact surfaces. A housing is overmolded onto the boss so that the first contact surface, the second contact surface, and the pair of studs are exposed. A printed circuit board (PCB) is oriented in the housing. A busbar is oriented in the housing in electrical communication with the PCB. The busbar has a conductive tab with an aperture formed therethrough. One of the pair of studs is received within the aperture and the contact tab is in electrical communication with one of the first contact surface and the second contact surface.
Abstract:
An electrical interconnection system for electrical components of a module includes a hub printed circuit board (PCB) having a first electrically conductive track and a second electrically conductive track. Each of the first and second electrically conductive tracks is configured to electrically connect at least two of the electrical components of the module, wherein the at least two of the electrical components of the module are external to the hub PCB. The system also includes multiple electrical terminals, wherein each of the electrical terminals is configured to electrically connect one of the first and second electrically conductive tracks of the hub PCB to one of the at least two electrical components of the module.
Abstract:
In at least one embodiment, a busbar assembly for a vehicle is provided. The assembly includes a printed circuit board (PCB), a first plate, a second plate, and a third plate. The first plate supported on the PCB and is configured to enable a first current to flow in a first direction. The second plate is supported on the PCB and includes a first portion positioned below the first plate to enable a second current to flow in a second direction. The third plate is on the PCB and is positioned below the second plate to enable the first current to flow in the first direction. The second current that flows through the second plate is increased through an effective cross-section of the second plate when the flow of the second current in the second direction is different than the flow of the first current in the first direction.
Abstract:
A female fuse terminal is provided with a longitudinally extending blade portion sized to be received within a socket. An intermediate portion extends from the blade portion and extends at an acute angle from a longitudinal direction of the blade portion. A female portion is sized to receive a fuse blade, and extends from the intermediate portion such that the female portion is offset parallel to the blade portion. A printed circuit board assembly is provided with a (PCB) having a socket sized to receive the terminal.
Abstract:
A junction box assembly is provided with a conductive boss having a first contact surface and a second contact surface spaced apart from the first contact surface. A pair of threaded conductive studs each extends from one of the contact surfaces. A housing is overmolded onto the boss so that the first contact surface, the second contact surface, and the pair of studs are exposed. A printed circuit board (PCB) is oriented in the housing. A busbar is oriented in the housing in electrical communication with the PCB. The busbar has a conductive tab with an aperture formed therethrough. One of the pair of studs is received within the aperture and the contact tab is in electrical communication with one of the first contact surface and the second contact surface.
Abstract:
A fuse housing assembly is provided with a housing having a base adapted to be mounted to a printed circuit board (PCB) at least partially over a through aperture. The housing has at least one receptacle sized to receive a case-type fuse. The housing has an aperture in the base aligned with the at least one receptacle for receipt of a terminal blade from the PCB for electrical communication with the case-type fuse. At least one connector blade is mounted to the housing and extends into the at least one receptacle and extends through the base to extend through the PCB through aperture for electrical communication with the case-type fuse and the connector.
Abstract:
A fuse housing assembly is provided with a housing having a base adapted to be mounted to a printed circuit board (PCB) at least partially over a through aperture. The housing has at least one receptacle sized to receive a case-type fuse. The housing has an aperture in the base aligned with the at least one receptacle for receipt of a terminal blade from the PCB for electrical communication with the case-type fuse. At least one connector blade is mounted to the housing and extends into the at least one receptacle and extends through the base to extend through the PCB through aperture for electrical communication with the case-type fuse and the connector.
Abstract:
A female fuse terminal is provided with a longitudinally extending blade portion sized to be received within a socket. An intermediate portion extends from the blade portion and extends at an acute angle from a longitudinal direction of the blade portion. A female portion is sized to receive a fuse blade, and extends from the intermediate portion such that the female portion is offset parallel to the blade portion. A printed circuit board assembly is provided with a (PCB) having a socket sized to receive the terminal.