PERSONALIZED RECOMMENDATION METHOD AND SYSTEM, AND COMPUTER-READABLE RECORD MEDIUM
    1.
    发明申请
    PERSONALIZED RECOMMENDATION METHOD AND SYSTEM, AND COMPUTER-READABLE RECORD MEDIUM 有权
    个性化推荐方法和系统以及计算机可读记录介质

    公开(公告)号:US20160162973A1

    公开(公告)日:2016-06-09

    申请号:US14563582

    申请日:2014-12-08

    申请人: LG CNS Co., Ltd.

    IPC分类号: G06Q30/06

    摘要: Provided is a method, system, and a computer-readable recording medium for providing a personalized recommendation of products. The method may include extracting product recommendations corresponding to a prescribed recommendation time period using two or more purchase cycle algorithms, the purchase cycle algorithms configured to calculate purchase cycles of products for a customer. The method may further include performing performance evaluation, using a processor, with respect to the product recommendations extracted using each of the purchase cycle algorithms, and recommending to the customer the product recommendation extracted from the purchase cycle algorithm having a highest ranking based on the performance evaluation.

    摘要翻译: 提供了一种用于提供产品的个性化推荐的方法,系统和计算机可读记录介质。 该方法可以包括使用两个或多个购买周期算法提取与规定的推荐时间段相对应的产品建议,所述购买周期算法被配置为计算顾客的产品的购买周期。 该方法可以进一步包括使用处理器对使用每个采购周期算法提取的产品建议执行性能评估,并且向顾客推荐从基于性能的最高排名的购买周期算法提取的产品建议 评估。

    PERSONALIZED RECOMMENDATION METHOD AND SYSTEM, AND COMPUTER-READABLE RECORD MEDIUM
    3.
    发明申请
    PERSONALIZED RECOMMENDATION METHOD AND SYSTEM, AND COMPUTER-READABLE RECORD MEDIUM 审中-公开
    个性化推荐方法和系统以及计算机可读记录介质

    公开(公告)号:US20160162974A1

    公开(公告)日:2016-06-09

    申请号:US14563676

    申请日:2014-12-08

    申请人: LG CNS CO., LTD.

    IPC分类号: G06Q30/06

    摘要: Provided is a method, system, and a computer-readable record medium for providing a personalized recommendation of products. The method of providing a personalized recommendation of products may include obtaining a first recommendation result using each of two or more single recommendation algorithms, performing a first performance evaluation, using a processor, with respect to the first recommendation result from each of the single recommendation algorithms, obtaining a second recommendation result based on the first recommendation result from each of the two or more single recommendation algorithms using a hybrid recommendation algorithm, the hybrid recommendation algorithms being different than each of the two or more single recommendation algorithms, performing a second performance evaluation, using the processor, with respect to the second recommendation result from the hybrid recommendation algorithm, and listing product recommendations after selecting a recommendation algorithm having a priority using the first performance evaluation and the second performance evaluation.

    摘要翻译: 提供了一种用于提供产品的个性化推荐的方法,系统和计算机可读记录介质。 提供产品的个性化推荐的方法可以包括:使用两个或多个单个推荐算法中的每一个来获得第一推荐结果,使用处理器执行关于来自每个单个推荐算法的第一推荐结果的第一性能评估 基于使用混合推荐算法的两个或多个单个推荐算法中的每一个的第一推荐结果获得第二推荐结果,所述混合推荐算法与两个或更多个单个推荐算法中的每一个不同,执行第二性能评估 使用所述处理器,关于来自所述混合推荐算法的所述第二推荐结果,以及在使用所述第一性能评估和所述第二性能评估选择具有优先级的推荐算法之后列出产品建议。

    Personalized recommendation method and system, and computer-readable record medium

    公开(公告)号:US10789634B2

    公开(公告)日:2020-09-29

    申请号:US14563676

    申请日:2014-12-08

    申请人: LG CNS CO., LTD.

    IPC分类号: G06Q30/06

    摘要: Provided is a method, system, and a computer-readable record medium for providing a personalized recommendation of products. The method of providing a personalized recommendation of products may include obtaining a first recommendation result using each of two or more single recommendation algorithms, performing a first performance evaluation, using a processor, with respect to the first recommendation result from each of the single recommendation algorithms, obtaining a second recommendation result based on the first recommendation result from each of the two or more single recommendation algorithms using a hybrid recommendation algorithm, the hybrid recommendation algorithms being different than each of the two or more single recommendation algorithms, performing a second performance evaluation, using the processor, with respect to the second recommendation result from the hybrid recommendation algorithm, and listing product recommendations after selecting a recommendation algorithm having a priority using the first performance evaluation and the second performance evaluation.