Abstract:
Display devices are disclosed. The display device comprises a substrate including an electrostatic discharge area where an electrostatic discharge element is disposed and a normal area surrounding the electrostatic discharge area, a lower planarization layer disposed on the substrate, a first trench positioned between the electrostatic discharge area and the normal area, and disposed in the lower planarization layer, a first upper planarization layer positioned in the normal area, and disposed on the lower planarization layer, and an insulation layer disposed on the first upper planarization layer, the first trench, and the lower planarization layer, and formed of an inorganic material, thereby preventing electrolytic corrosion in the electrostatic discharge area.
Abstract:
Disclosed is an organic light emitting diode device fabrication method that includes: preparing a substrate which is defined into a display area and a non-display area; forming a light emission portion, which includes a thin film transistor and an organic light emission layer in the display area, and a pad portion in a part of the non-display area; sequentially forming a sacrificial layer and an encapsulation passivation film throughout the display and non-display areas; and separating the sacrificial layer and the encapsulation passivation film from the pad portion through an irradiation of laser light.
Abstract:
Provided is a method of manufacturing an organic light emitting display device. The method includes: providing a first substrate including: a display portion, and a non-display portion, forming a thin film transistor (TFT) and an organic light emitting diode (OLED) in the display portion of the first substrate, providing a pad portion including: at least one pad contact portion at the non-display portion and electrically connected to the TFT, and a pad insulating portion between adjacent pad contact portions, providing an anti-moisture insulation layer entirely covering the first substrate, adhering an encapsulating substrate onto the anti-moisture insulation portion in correspondence with the display portion, and removing the anti-moisture insulation layer, at the pad contact portion, using a laser.
Abstract:
Provided is a method of manufacturing an organic light emitting display device. The method includes: providing a first substrate including: a display portion, and a non-display portion, forming a thin film transistor (TFT) and an organic light emitting diode (OLED) in the display portion of the first substrate, providing a pad portion including: at least one pad contact portion at the non-display portion and electrically connected to the TFT, and a pad insulating portion between adjacent pad contact portions, providing an anti-moisture insulation layer entirely covering the first substrate, adhering an encapsulating substrate onto the anti-moisture insulation portion in correspondence with the display portion, and removing the anti-moisture insulation layer, at the pad contact portion, using a laser.
Abstract:
Disclosed is an organic light emitting diode device fabrication method that includes: preparing a substrate which is defined into a display area and a non-display area; forming a light emission portion, which includes a thin film transistor and an organic light emission layer in the display area, and a pad portion in a part of the non-display area; sequentially forming a sacrificial layer and an encapsulation passivation film throughout the display and non-display areas; and separating the sacrificial layer and the encapsulation passivation film from the pad portion through an irradiation of laser light.
Abstract:
Disclosed is an imprinting apparatus and imprinting method using the same that prevent a process of forming a pattern on a substrate from being affected by flatness of a stage. The imprinting apparatus comprises a chamber unit in which a process of forming a pattern on a substrate is carried out; a stage for supporting the substrate on which a resin layer is formed; an installing member positioned above the stage and having a mold member attached to transform the resin layer so as to form the pattern on the substrate; and a first spraying unit for spraying fluid to separate the substrate supported by the stage from the stage, wherein the installing member moves the mold member in the direction getting near to the substrate separated from the stage so that the mold member and the resin layer are brought into contact with each other.