Abstract:
An organic light emitting display device comprises two emission portions between first and second electrodes, wherein at least one among the two emission portions includes two emitting layers, whereby efficiency and a color reproduction ratio may be improved.
Abstract:
Provided are a method of manufacturing an organic light emitting display device and an organic light emitting display device manufactured by the method. The method includes calculating a peak-luminance current density for each of a red sub-pixel, a blue sub-pixel, a green sub-pixel, and a white sub-pixel, calculating an average use current density for each of the red sub-pixel, blue sub-pixel, green sub-pixel, and white sub-pixel; determining a size of each sub-pixel with the peak-luminance current density and the average use current density, and forming the sub-pixels with the determined sizes of the respective sub-pixels. The present invention sets the size of each sub-pixel in consideration of a peak-luminance current density and an average use current density, thus easily achieving the peak luminance and enhancing the color-coordinate life.
Abstract:
Disclosed is a white organic light emitting device. The white organic light emitting device includes a first emission part between a first electrode and a second electrode, a second emission part on the first emission part, and a third emission part on the second emission part. At least one of the first to third emission parts includes at least two emission layers including a red emission layer, and a position of the red emission layer is set to enhance a color reproduction rate and at least one of red efficiency, green efficiency, and blue efficiency.
Abstract:
A white organic light emitting device includes: first and second electrodes formed to face each other on a substrate; a first stack configured with a hole injection layer, a first hole transportation layer, a first light emission layer and a first electron transportation layer which are stacked between the first and second electrodes; a second stack configured with a second hole transportation layer, a second light emission layer, a third light emission layer, a second electron transportation layer and an electron injection layer which are stacked between the first stack and the second electrode; and a charge generation layer interposed between the first and second stacks and configured to adjust a charge balance between the two stacks.
Abstract:
An organic light emitting display device comprises two emission portions between first and second electrodes, wherein at least one among the two emission portions includes two emitting layers, whereby efficiency and a color reproduction ratio may be improved.
Abstract:
Disclosed is a white organic light emitting display device comprising first and second electrodes, and a first emitting part between the first and second electrodes, the first emitting part including a red emitting layer and a blue emitting layer adjacent to the red emitting layer, wherein the red emitting layer includes a first host material which does not absorb a blue light emitted from the blue emitting layer, and an organic light emitting display apparatus using the same.
Abstract:
Provided are a method of manufacturing an organic light emitting display device and an organic light emitting display device manufactured by the method. The method includes calculating a peak-luminance current density for each of a red sub-pixel, a blue sub-pixel, a green sub-pixel, and a white sub-pixel, calculating an average use current density for each of the red sub-pixel, blue sub-pixel, green sub-pixel, and white sub-pixel; determining a size of each sub-pixel with the peak-luminance current density and the average use current density, and forming the sub-pixels with the determined sizes of the respective sub-pixels. The present invention sets the size of each sub-pixel in consideration of a peak-luminance current density and an average use current density, thus easily achieving the peak luminance and enhancing the color-coordinate life.
Abstract:
Disclosed is a white organic light emitting device. The white organic light emitting device includes a first emission part between a first electrode and a second electrode, a second emission part on the first emission part, and a third emission part on the second emission part. At least one of the first to third emission parts includes at least two emission layers including a red emission layer, and a position of the red emission layer is set to enhance a color reproduction rate and at least one of red efficiency, green efficiency, and blue efficiency.
Abstract:
An organic light emitting display device comprises two emission portions between first and second electrodes, wherein at least one among the two emission portions includes two emitting layers, whereby efficiency and a color reproduction ratio may be improved.
Abstract:
A white organic light emitting device can include first and second electrodes on a substrate; a first stack configured with a hole injection layer, a first hole transportation layer, a first light emission layer and a first electron transportation layer which are stacked on the first electrode; a second stack configured with a second hole transportation layer, a second light emission layer, a third light emission layer, and a second electron transportation layer which are stacked on the first stack; a third stack interposed between the second stack and the second electrode and configured with a third hole transportation layer, a fourth light emission layer, a third electron transportation layer and an electron injection layer which are stacked on the second stack; and charge generation layers interposed between the first and second stacks and between the second and third stacks and configured to adjust a charge balance between the stacks.