Abstract:
Discussed is a method for manufacturing an organic light emitting display device including forming a first electrode on a predetermined region of a substrate; forming an organic light emitting layer on the first electrode; forming a second electrode on the substrate including the organic light emitting layer; and bonding an encapsulation substrate to the substrate so as to electrically connect the encapsulation substrate and the second electrode to each other.
Abstract:
A display device is discussed which can include: a flexible substrate defined into a first area, a second area bent from an edge of the first area, and a third area outwardly expanded from the second area; a thin film transistor layer disposed on the substrate; an organic emission layer disposed on the thin film transistor layer; an encapsulation layer disposed on the organic emission layer; a polarization layer disposed on the encapsulation layer; and a cover window disposed on the polarization layer. The polarization layer is formed on the encapsulation layer opposite to the first and third areas of the substrate.
Abstract:
An organic electroluminescent display device is disclosed which includes: a lower substrate including a first substrate defined into red, green and blue sub-pixel regions, first and second switching elements formed in the red and green sub-pixel regions, first and second anodes each connected to the first and second switching elements, and a first organic light emission layer entirely formed on the first substrate provided with the first and second anodes; and an upper substrate including a second substrate, red and green color filter layers formed on the second substrate corresponding to the red and green sub-pixel regions, a third switching element formed on the second substrate corresponding to the blue sub-pixel region, a third anode connected to the third switching element, and a second organic light emission layer entirely formed on the second substrate provided with the red and green color filter layers and the third anode.
Abstract:
An organic electroluminescent display device is disclosed which includes: a lower substrate including a first substrate defined into red, green and blue sub-pixel regions, first and second switching elements formed in the red and green sub-pixel regions, first and second anodes each connected to the first and second switching elements, and a first organic light emission layer entirely formed on the first substrate provided with the first and second anodes; and an upper substrate including a second substrate, red and green color filter layers formed on the second substrate corresponding to the red and green sub-pixel regions, a third switching element formed on the second substrate corresponding to the blue sub-pixel region, a third anode connected to the third switching element, and a second organic light emission layer entirely formed on the second substrate provided with the red and green color filter layers and the third anode.
Abstract:
A liquid crystal display (LCD) device of a horizontal electric field type is disclosed. The LCD device is fabricated by a three-mask process, and has gate pad, common pad and data pad electrodes, each including a upper electrode formed of a transparent conductive material. With a lift-off process, these upper electrodes are formed within contact holes.
Abstract:
Provided are a method of manufacturing an organic light emitting display device and an organic light emitting display device manufactured by the method. The method includes calculating a peak-luminance current density for each of a red sub-pixel, a blue sub-pixel, a green sub-pixel, and a white sub-pixel, calculating an average use current density for each of the red sub-pixel, blue sub-pixel, green sub-pixel, and white sub-pixel; determining a size of each sub-pixel with the peak-luminance current density and the average use current density, and forming the sub-pixels with the determined sizes of the respective sub-pixels. The present invention sets the size of each sub-pixel in consideration of a peak-luminance current density and an average use current density, thus easily achieving the peak luminance and enhancing the color-coordinate life.
Abstract:
Disclosed is a method of manufacturing an organic light emitting display device. The method include forming a driving thin film transistor and passivation layer on a substrate, forming a bank layer at a boundary portion between adjacent sub-pixels, on the passivation layer, laminating a first photoresist film on the bank layer, forming a first photoresist pattern by irradiating IR light on the first photoresist film in an area except a first sub-pixel, depositing a first organic emission layer in the first sub-pixel area exposed by the first photoresist pattern, removing the first photoresist pattern, laminating a second photoresist film on the bank layer, forming a second photoresist pattern by irradiating IR light on the second photoresist film in an area except a second sub-pixel, depositing a second organic emission layer in the second sub-pixel area exposed by the second photoresist pattern, and removing the second photoresist pattern.
Abstract:
Provided are a method of manufacturing an organic light emitting display device and an organic light emitting display device manufactured by the method. The method includes calculating a peak-luminance current density for each of a red sub-pixel, a blue sub-pixel, a green sub-pixel, and a white sub-pixel, calculating an average use current density for each of the red sub-pixel, blue sub-pixel, green sub-pixel, and white sub-pixel; determining a size of each sub-pixel with the peak-luminance current density and the average use current density, and forming the sub-pixels with the determined sizes of the respective sub-pixels. The present invention sets the size of each sub-pixel in consideration of a peak-luminance current density and an average use current density, thus easily achieving the peak luminance and enhancing the color-coordinate life.
Abstract:
Provided are a method of manufacturing an organic light emitting display device and an organic light emitting display device manufactured by the method. The method includes calculating a peak-luminance current density for each of a red sub-pixel, a blue sub-pixel, a green sub-pixel, and a white sub-pixel, calculating an average use current density for each of the red sub-pixel, blue sub-pixel, green sub-pixel, and white sub-pixel; determining a size of each sub-pixel with the peak-luminance current density and the average use current density, and forming the sub-pixels with the determined sizes of the respective sub-pixels. The present invention sets the size of each sub-pixel in consideration of a peak-luminance current density and an average use current density, thus easily achieving the peak luminance and enhancing the color-coordinate life.
Abstract:
Discussed is an organic light emitting display device which prevents a voltage drop, wherein the light emitting display device includes a substrate; a first electrode on the substrate; an organic light emitting layer on the first electrode; a second electrode on the substrate including the organic light emitting layer; and an encapsulation substrate confronting the substrate, wherein the encapsulation substrate is formed of a metal material, and is electrically connected with the second electrode.