Abstract:
A pixel circuit, a method for driving a pixel circuit and a display device. The pixel circuit includes a driving element including a first electrode connected to a first node, a first gate electrode connected to a second node, a second electrode connected to a third node, and a second gate electrode to which a preset voltage is applied; a light emitting element including an anode electrode connected to a fourth node and a cathode electrode to which a low-potential power supply voltage is applied, the light emitting element being driven according to a current from the driving element; a first switch element connected between the first node and the second node; and a second switch element connected between the third node and the fourth node.
Abstract:
Provided are a gate driver and a display device including the same. The display device may include a display panel configured to display an image, a data driver configured to supply a data voltage to the display panel, a gate driver including a scan signal generation circuit configured to supply a scan signal to the display panel and a light-emitting signal generation circuit configured to supply a light-emitting signal to the display panel, and a clear signal line connected to the gate driver to deliver a clear signal in an alternating current form including a positive voltage and a negative voltage, wherein the gate driver initializes at least one of nodes of the scan signal generation circuit and nodes of the light-emitting signal generation circuit based on the clear signal.
Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.
Abstract:
A gate driving circuit and a display device including the same are disclosed. The gate driving circuit includes signal transmitters receiving a start pulse, a shift clock, a charge/discharge clock, a back-bias clock, a high-potential driving voltage, and a low-potential reference voltage, and connected in a cascade structure. An Nth (N is a positive integer) signal transmitter of the signal transmitters includes a first control node; a second control node; a first controller controlling charging and discharging of the first control node by using at least one transistor to which the back-bias clock is inputted; a second controller controlling charging and discharging of the second control node; a first output buffer outputting a carry pulse in response to voltages of the first and second control nodes; and a second output buffer outputting a gate pulse.
Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.
Abstract:
A display device may include: a first data line electrically connected to a first thin film transistor; a first pixel electrode electrically connected with the first thin film transistor; a second data line electrically connected to a second thin film transistor; a second pixel electrode electrically connected with the second thin film transistor; a first touch sensing electrode corresponding to the first pixel electrode and insulated from the first pixel electrode; a second touch sensing electrode corresponding to the second pixel electrode and insulated from the second pixel electrode; a first sensing line electrically connected with the first touch sensing electrode; and a second sensing line electrically connected with the second touch sensing electrode, wherein the first data line overlaps with the first touch sensing electrode and the second touch sensing electrode, and the second data line overlaps with the first touch sensing electrode and the second touch sensing electrode.
Abstract:
A gate driving circuit and a display device including the same are discussed. A signal transmitter of the gate driving circuit can include a first charge controller configured to charge a first control node in response to a voltage of a VST node, a second charge controller configured to charge a second control node using a first transistor that is turned on in response to an (N+1)th clock generated following an Nth clock, a first discharge controller configured to discharge the first control node in a charging period of the second control node, and a second discharge controller configured to discharge the second control node when the voltage of the VST node is a high voltage or in a charging period of the first control node.
Abstract:
A pixel circuit and a display device including the same are disclosed. The pixel circuit includes a driving element including a first electrode connected to a first node, a first gate electrode connected to a second node, a second electrode connected to a third node, and a second gate electrode to which a preset voltage is applied; a light emitting element including an anode electrode connected to a fourth node and a cathode electrode to which a low-potential power supply voltage is applied; a first switch element connected between the first node and the second node; a second switch element connected between the third node and the fourth node; a first capacitor connected to the first gate electrode of the driving element; and a second capacitor connected to the third node.
Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.
Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.