Abstract:
A display device may include: a first data line electrically connected to a first thin film transistor; a first pixel electrode electrically connected with the first thin film transistor; a second data line electrically connected to a second thin film transistor; a second pixel electrode electrically connected with the second thin film transistor; a first touch sensing electrode corresponding to the first pixel electrode and insulated from the first pixel electrode; a second touch sensing electrode corresponding to the second pixel electrode and insulated from the second pixel electrode; a first sensing line electrically connected with the first touch sensing electrode; and a second sensing line electrically connected with the second touch sensing electrode, wherein the first data line overlaps with the first touch sensing electrode and the second touch sensing electrode, and the second data line overlaps with the first touch sensing electrode and the second touch sensing electrode.
Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.
Abstract:
Disclosed is a touch sensitive display apparatus which decreases a load of each of a plurality of touch electrodes and reduces a load deviation between the plurality of touch electrodes, thereby enhancing image quality. The touch sensitive display apparatus comprises a touch sensitive panel. The touch panel comprises a plurality of touch electrodes comprising at least a first touch electrode. The first touch electrode comprises a plurality of first touch electrode lines that are parallel to each other. A first touch signal line is connected to the plurality of first touch electrode lines of the first touch electrode, and the first touch electrode is driven for image display and touch sensing via the first touch signal line. A first connecting line is in a different layer than the first touch electrode lines, and the first connecting line is connected to the plurality of first touch electrode lines.
Abstract:
Disclosed are a driving circuit, a touch display device, and a method of driving the same. The touch display device for sensing a user's touch force may sense a capacitance change due to a change in a contact area on a display panel after a section in which a sensing value of a touch force based on a change in capacitance between first electrodes and a second electrode becomes a saturated state, thereby sensing the user's touch force even in a section where the change in the capacitance between the first electrodes and the second electrode is small. Accordingly, it is possible to expand a range in which a user's touch force can be sensed and acquire data on a user's touch force linearly indicated in the expanded range, so that touch force leveling becomes easy and various inputs based on the touch force can be processed.
Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.
Abstract:
Disclosed is an LCD device which realizes decreased thickness, simplified process, and decreased cost by using a common electrode for formation of electric field to drive liquid crystal as a sensing electrode, and removing a touch screen from an upper surface of the liquid crystal panel, the LCD device comprising gate and data lines crossing each other to define plural pixels on a lower substrate; a pixel electrode in each of the plural pixels; plural common electrode blocks patterned at the different layer from the pixel electrode, wherein the common electrode blocks, together with the pixel electrode, forms an electric field, and senses a user's touch; and plural sensing lines electrically connected with the common electrode blocks, wherein, if the sensing line is electrically connected with one of the common electrode blocks, the sensing line is insulated from the remaining common electrode blocks.
Abstract:
Disclosed is a touch sensitive display apparatus which decreases a load of each of a plurality of touch electrodes and reduces a load deviation between the plurality of touch electrodes, thereby enhancing image quality. The touch sensitive display apparatus comprises a touch sensitive panel. The touch panel comprises a plurality of touch electrodes comprising at least a first touch electrode. The first touch electrode comprises a plurality of first touch electrode lines that are parallel to each other. A first touch signal line is connected to the plurality of first touch electrode lines of the first touch electrode, and the first touch electrode is driven for image display and touch sensing via the first touch signal line. A first connecting line is in a different layer than the first touch electrode lines, and the first connecting line is connected to the plurality of first touch electrode lines.
Abstract:
Disclosed is a touch sensitive display apparatus which decreases a load of each of a plurality of touch electrodes and reduces a load deviation between the plurality of touch electrodes, thereby enhancing image quality. The touch sensitive display apparatus comprises a touch sensitive panel. The touch panel comprises a plurality of touch electrodes comprising at least a first touch electrode. The first touch electrode comprises a plurality of first touch electrode lines that are parallel to each other. A first touch signal line is connected to the plurality of first touch electrode lines of the first touch electrode, and the first touch electrode is driven for image display and touch sensing via the first touch signal line. A first connecting line is in a different layer than the first touch electrode lines, and the first connecting line is connected to the plurality of first touch electrode lines.
Abstract:
Disclosed is a touch sensitive display apparatus which decreases a load of each of a plurality of touch electrodes and reduces a load deviation between the plurality of touch electrodes, thereby enhancing image quality. The touch sensitive display apparatus comprises a touch sensitive panel. The touch panel comprises a plurality of touch electrodes comprising at least a first touch electrode. The first touch electrode comprises a plurality of first touch electrode lines that are parallel to each other. A first touch signal line is connected to the plurality of first touch electrode lines of the first touch electrode, and the first touch electrode is driven for image display and touch sensing via the first touch signal line. A first connecting line is in a different layer than the first touch electrode lines, and the first connecting line is connected to the plurality of first touch electrode lines.
Abstract:
Disclosed is a touch sensitive display apparatus which decreases a load of each of a plurality of touch electrodes and reduces a load deviation between the plurality of touch electrodes, thereby enhancing image quality. The touch sensitive display apparatus comprises a touch sensitive panel. The touch panel comprises a plurality of touch electrodes comprising at least a first touch electrode. The first touch electrode comprises a plurality of first touch electrode lines that are parallel to each other. A first touch signal line is connected to the plurality of first touch electrode lines of the first touch electrode, and the first touch electrode is driven for image display and touch sensing via the first touch signal line. A first connecting line is in a different layer than the first touch electrode lines, and the first connecting line is connected to the plurality of first touch electrode lines.