Abstract:
An OLED device is disclosed. The device includes a substrate defined to have a first active area and a dummy area. First electrodes are formed on the substrate, and a first bank pattern is formed to overlap with edges of each first electrode and to expose a part of an upper surface of each first electrode. A second bank pattern is formed on the first bank pattern within the first active area, and a third bank pattern is formed on the first bank pattern within the dummy area in the same layer as the second bank pattern. The second bank pattern is formed to have a larger width than that of the third bank pattern. As such, an organic emission layer can be evenly formed in the active area.
Abstract:
Disclosed is a display device that may include a thin film transistor array substrate that includes a plurality of first sub-pixels and a plurality of second sub-pixels, wherein one of the plurality of first sub-pixels includes a first emission region and a first non-emission region, and one of the plurality of second sub-pixels includes a second emission region and a second non-emission region; a first bank pattern in the first and second non-emission regions, the first bank pattern including a hydrophilic material; and a second bank pattern on an upper surface of the first bank pattern, the second bank pattern includes a hydrophobic material.
Abstract:
An organic light emitting display (OLED) device is disclosed. The OLED device includes a substrate configured to include a sub-pixel defined into an emission region and a driving region. A first bank pattern configured to define the emission region of the sub-pixel is formed on the substrate. A second bank pattern configured to include an opening, which exposes the emission region and a part of the driving region, is formed on a part of an upper surface of the first bank pattern. An organic emission layer is formed in the opening. As such, the occupied area of the organic emission layer becomes wider. Therefore, the thickness deviation of the organic emission layer is prevented or minimized.
Abstract:
A method of forming an organic light emitting diode (OLED) display device is discussed. The method according to an embodiment includes forming a first bank pattern on a substrate and in an emission region and a non-emission region; forming a second bank pattern on the first bank pattern; forming an organic emission layer on the substrate in the emission region; and forming a planarization film on the substrate to include an opening under the first and second bank patterns in the non-emission region. The second bank pattern is on the first bank pattern in the non-emission region, and the first bank pattern is in the opening of the planarization film in the non-emission region.
Abstract:
An organic light emitting diode (OLED) display device, and a method for manufacturing the OLED display device are discussed. The OLED display device according to one embodiment includes a substrate; a first bank pattern formed on the substrate and in an emission region and a non-emission region; a second bank pattern formed on the first bank pattern; an organic emission layer formed on the substrate in the emission region; and a planarization film formed on the substrate to include an opening under the first and second bank patterns in the non-emission region. The second bank pattern is on the first bank pattern in the non-emission region, and the first bank pattern is in the opening of the planarization film in the non-emission region.
Abstract:
An organic light emitting display (OLED) device is disclosed. The OLED device includes a substrate configured to include a sub-pixel defined into an emission region and a driving region. A first bank pattern configured to define the emission region of the sub-pixel is formed on the substrate. A second bank pattern configured to include an opening, which exposes the emission region and a part of the driving region, is formed on a part of an upper surface of the first bank pattern. An organic emission layer is formed in the opening. As such, the occupied area of the organic emission layer becomes wider. Therefore, the thickness deviation of the organic emission layer is prevented or minimized.
Abstract:
Disclosed an organic electroluminescent device and a method for fabricating the same. The device may include a thin film transistor disposed on a substrate; a first electrode formed for each pixel on the thin film transistor; a first pixel define layer formed to cover an edge portion of the first electrode; a second pixel define layer formed on the first pixel define layer; an organic layer formed on the first electrode; and a second electrode formed on the organic layer.
Abstract:
Disclosed an organic electroluminescent device and a method for fabricating the same. The device may include a thin film transistor disposed on a substrate; a first electrode formed for each pixel on the thin film transistor; a first pixel define layer formed to cover an edge portion of the first electrode; a second pixel define layer formed on the first pixel define layer; an organic layer formed on the first electrode; and a second electrode formed on the organic layer.
Abstract:
Disclosed is a display device that may include a thin film transistor array substrate that includes a plurality of first sub-pixels and a plurality of second sub-pixels, wherein one of the plurality of first sub-pixels includes a first emission region and a first non-emission region, and one of the plurality of second sub-pixels includes a second emission region and a second non-emission region; a first bank pattern in the first and second non-emission regions, the first bank pattern including a hydrophilic material; and a second bank pattern on an upper surface of the first bank pattern, the second bank pattern includes a hydrophobic material.