Abstract:
A light source unit for a display device includes: a printed circuit board including a soldering pad located on a substrate of glass and including a copper layer, and a first diffusing barrier pattern located on the soldering pad and including a molybdenum alloy; and a light emitting diode mounted on the soldering pad through a solder resist. In one embodiment, the printed circuit board is a glass printed circuit board.
Abstract:
Disclosed herein is an OLED lighting apparatus which can achieve both improvement in reliability and reduction in manufacturing cost. In the OLED lighting apparatus, an encapsulation layer is disposed over the active area and the non-active area on a buffer layer, such that a pad disposed in the non-active area of the buffer layer can be stably secured by the encapsulation layer bonded thereto. Accordingly, upon tape automated bonding between an FPCB substrate with a COF tape attached thereto and a via electrode, the COF tape does not directly contact the pad but contacts the via electrode connected to the pad, particularly a connection terminal of the via electrode disposed on an upper surface of the encapsulation layer, thereby establishing electrical connection between the FPCB substrate and the via electrode. In this way, the connection terminal of the via electrode is electrically connected to the FPCB substrate via the COF tape, whereby a signal from the outside can be applied to the pad connected to the via electrode.
Abstract:
A display device includes a substrate including an active area, a hole area disposed within the active area and having a through hole disposed therein, and a disconnection area surrounding the hole area; and a plurality of disconnection structures disposed on the substrate in the disconnection area, wherein each of the plurality of disconnection structures includes, a lower layer, an intermediate layer disposed on the lower layer and having a width smaller than that of the lower layer, and an upper layer disposed on the intermediate layer and having a width greater than that of the intermediate layer, thereby penetration of moisture or oxygen from the through hole into the active area is minimized.
Abstract:
The present disclosure relates to an electroluminescent lighting device having high aperture ratio. The present disclosure provides an electroluminescent light device comprising: a substrate having an emission area and a non-emission area surrounding the emission area; a power line disposed in the emission area and defining an open area; a buffer layer covering the substrate having the power line; a power contact hole formed at the buffer layer for exposing some of the power line; an anode layer disposed on the buffer layer and contacting the power line through the power contact hole; a passivation layer covering the power contact hole on the anode layer; an emission layer on the anode layer; and a cathode layer on the emission layer.
Abstract:
An organic light-emitting display device and a method of manufacturing the same are disclosed. The organic light-emitting display device includes a touch sensor having a plurality of touch electrodes on an encapsulation stack covering a light-emitting element. The touch electrodes are formed at a low temperature and are crystallized through an annealing process, whereby it is possible to prevent damage to an organic light-emitting layer at the time of forming the touch electrodes. Thus the touch electrodes can be formed on the encapsulation stack without an additional bonding process to bond the touch sensor to the organic light-emitting display device.
Abstract:
An OLED panel for a lighting device is provided. The OLED panel for a lighting device may include a substrate; a first auxiliary wiring pattern disposed on the substrate; a first electrode disposed on a substrate on which the first auxiliary wiring pattern is disposed; a passivation layer disposed on the first electrode within an area where the first auxiliary wiring pattern is disposed; a second auxiliary wiring pattern disposed on the passivation layer to form a plurality of areas partitioned from each other; an OLED light emitting structure disposed in the plurality of areas partitioned by the second auxiliary wiring pattern; a second electrode disposed on the OLED light emitting structure and the second auxiliary wiring pattern; and, an encapsulating layer disposed on the second electrode. The OLED panel for a lighting device may form the respective OLED light emitting structures in an island shape, thereby improving luminance uniformity.
Abstract:
The present application relates to an OLED panel for a lighting device and a method of manufacturing the same. An OLED panel for a lighting device includes: a substrate; a auxiliary wiring pattern having a plurality of wiring lines disposed on the substrate; a first electrode disposed on the substrate where the auxiliary wiring pattern is disposed, and having a planarized upper surface; a passivation layer disposed on the first electrode and disposed at least in an area above the auxiliary wiring pattern; an OLED emission structure disposed on the first electrode; and a second electrode disposed on the OLED emission structure. In the OLED panel for a lighting device, luminance uniformity may be improved through a dual auxiliary wiring pattern, and the upper surface of the first electrode is planarized. Accordingly, the area of the passivation layer is reduced, and thus a light-emitting area may be increased.
Abstract:
A flexible OLED panel for a lighting device according to the present invention includes a substrate which is made of a polymer material and has a first light extracting pattern provided on a lower surface thereof; an auxiliary wiring pattern which is arranged on the substrate; a first electrode which is arranged on the substrate on which the auxiliary wiring pattern is arranged; a passivation layer which is arranged on the first electrode, at least on an area on which the auxiliary wiring pattern is arranged; an OLED light emitting structure which is arranged on the first electrode on which the passivation layer is arranged; a second electrode which is arranged on the OLED light emitting structure; and an encapsulation layer which is arranged on the second electrode.
Abstract:
Disclosed herein is an OLED lighting apparatus which can achieve both improvement in reliability and reduction in manufacturing cost. In the OLED lighting apparatus, an encapsulation layer is disposed over the active area and the non-active area on a buffer layer, such that a pad disposed in the non-active area of the buffer layer can be stably secured by the encapsulation layer bonded thereto. Accordingly, upon tape automated bonding between an FPCB substrate with a COF tape attached thereto and a via electrode, the COF tape does not directly contact the pad but contacts the via electrode connected to the pad, particularly a connection terminal of the via electrode disposed on an upper surface of the encapsulation layer, thereby establishing electrical connection between the FPCB substrate and the via electrode. In this way, the connection terminal of the via electrode is electrically connected to the FPCB substrate via the COF tape, whereby a signal from the outside can be applied to the pad connected to the via electrode.
Abstract:
An array substrate includes: a trench having a depth from a surface of a substrate; a gate line, a gate electrode and a data pattern filling the respective trenches, wherein the data pattern is between the adjacent gate lines; a gate insulating layer on the gate line, the gate electrode and the data pattern, substantially flat over the substrate, and including contact holes that expose both ends of the data pattern, respectively; a data connection portion on the gate insulating layer and contacting the adjacent data patterns through the contact holes; a source electrode extending from the data connection portion, and a drain electrode spaced apart from the source electrode; a passivation layer on the source and drain electrodes and including a drain contact hole exposing the drain electrode; and a pixel electrode on the passivation layer and contacting the drain electrode through the drain contact hole.