Abstract:
An electroluminescence display apparatus includes a pixel including a driving element generating a driving current, a data line connected to the pixel to transfer a data voltage needed for generating the driving current, a reference voltage line connected to the pixel to transfer a first reference voltage and/or a second reference voltage needed for generating the driving current, and a driving & sensing circuit configured to perform an integral on the driving current input through the reference voltage line, output an integral result to the data line, decrease a voltage of the data line from the data voltage to an off voltage for turning off the driving element, and detect an off voltage of the driving element from the data line.
Abstract:
An electroluminescence display apparatus includes a display panel including a first pixel and a second pixel, a first current integrator connected to the first pixel through a first sensing channel to sense a first current from the first pixel to generate a first output voltage, a second current integrator connected to the second pixel through a second sensing channel to sense a second current from the second pixel to generate a second output voltage, and a sampling capacitor connected to an output terminal of the first current integrator at one electrode thereof and connected to an output terminal of the second current integrator at the other electrode thereof, thereby sampling the first output voltage and the second output voltage.
Abstract:
A display device according to an embodiment includes a display panel in which a plurality of gate and date lines are formed, and a gate driver configured to include first and second shift registers and a control portion. The first shift register is disposed opposite to odd-numbered gate lines of the display panel. The second shift register is disposed opposite to even-numbered gate lines of the display panel. The control portion transfers a first control signal to the first shift register, derives a second control signal from the first control signal, and applies the second control signal to the second shift register.
Abstract:
An organic light emitting diode display device is disclosed which includes: a scan switch controlled by a scan pulse on a gate line and connected between a data line and a first node; a driving switch which includes a gate electrode connected to the first node, a source electrode connected to a second node, and a drain electrode connected to a first driving voltage line; a sensing switch controlled by a sensing control signal and connected between the second node and a third node on a sensing line; and an organic light emitting diode connected between the second node and a second driving voltage line.
Abstract:
The present disclosure relates to an electroluminescent display device and a method for sensing electrical characteristics thereof, and the electroluminescent display device includes a display panel including a plurality of pixels including a sensing pixel and a non-sensing pixel connected to each data line, the plurality of pixels sharing one sensing line, a sensing circuit configured to sense an electrical characteristic value of the sensing pixel based on a sensing voltage applied to the shared sensing line, and a feedback unit configured to apply a feedback voltage according to the sensing voltage applied to the shared sensing line to the data line of the non-sensing pixel.
Abstract:
An OLED display device is disclosed which includes: a display panel configured with pixels which each include an organic light emitting diode and a driving transistor applying a driving current to the organic light emitting diode; a gate driver connected to the pixels through gate lines; a data driver configured to apply a sensing voltage to the pixels through data lines in a sensing mode and enable a sensing current to flow through each of the driving transistors; a sensing driver configured to sense threshold voltages opposite the driving currents which flow through the driving transistors; and a brightness compensation circuit configured to derive negatively shifted degrees of threshold voltages of the driving transistors from the sensed threshold voltages, detect a bright-defected pixel on the basis of the negatively shifted degrees, and generate a compensation gray value for the bright-defected pixel.
Abstract:
An electroluminescence display apparatus includes a pixel and a sensing circuit supplying a pixel reference voltage to the pixel through a reference voltage line during display driving and sensing a pixel current, flowing in the pixel, through the reference voltage line during sensing driving succeeding the display driving operation. The sensing circuit includes a sensing channel terminal connected to the reference voltage line, a first switch between the sensing channel terminal and an input terminal for the pixel reference voltage, an integrator amplifier including a first input terminal, a second input terminal, and an output terminal, an input terminal for an integrator reference voltage connected to the second input terminal, a second switch between the first input terminal and the output terminal, a first capacitor between the sensing channel terminal and the first input terminal, and a second capacitor between the sensing channel terminal and the output terminal.
Abstract:
An OLED display device is disclosed which includes: a display panel configured with pixels which each include an organic light emitting diode and a driving transistor applying a driving current to the organic light emitting diode; a gate driver connected to the pixels through gate lines; a data driver configured to apply a sensing voltage to the pixels through data lines in a sensing mode and enable a sensing current to flow through each of the driving transistors; a sensing driver configured to sense threshold voltages opposite the driving currents which flow through the driving transistors; and a brightness compensation circuit configured to derive negatively shifted degrees of threshold voltages of the driving transistors from the sensed threshold voltages, detect a bright-defected pixel on the basis of the negatively shifted degrees, and generate a compensation gray value for the bright-defected pixel.