Abstract:
A display of an electric device includes a plurality of separated transparent electrode blocks, which are configured to provide one or more of supplemental features such as touch recognition. Signal paths between the transparent electrode blocks and the driver for the supplemental feature are implemented with a plurality of conductive lines placed under one or more planarization layers. The conductive lines implementing the signal paths are routed across the display area, directly toward a non-display area where drive-integrated circuits are located.
Abstract:
A display of an electric device includes a plurality of separated transparent electrode blocks, which are configured to provide one or more of supplemental features such as touch recognition. Signal paths between the transparent electrode blocks and the driver for the supplemental feature are implemented with a plurality of conductive lines placed under positioned under one or more planarization layers. The conductive lines implementing the signal paths are routed across the display area, directly toward a non-display area where drive-integrated circuits are located.
Abstract:
A touch recognition enabled display device includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A display of an electric device includes a plurality of separated transparent electrode blocks, which are configured to provide one or more of supplemental features such as touch recognition. Signal paths between the transparent electrode blocks and the driver for the supplemental feature are implemented with a plurality of conductive lines placed under positioned under one or more planarization layers. The conductive lines implementing the signal paths are routed across the display area, directly toward a non-display area where drive-integrated circuits are located.
Abstract:
A touch recognition enabled display panel includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A touch recognition enabled display device includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A touch recognition enabled display panel includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
Provided is a liquid crystal display device according to an embodiment of the present disclosure. The display device includes: a first metal layer, a first insulating layer, a second metal layer, a second insulating layer, and a third metal layer deposited in sequence on a substrate. The first insulating layer and the second insulating layer include a one-hole bridge contact portion for exposing a part of the first metal layer and a part of the second metal layer at one time. The third metal layer is realized to be in contact with the first metal layer and the second metal layer through the one-hole bridge contact portion.
Abstract:
A touch recognition enabled display device includes a plurality of common electrode blocks serving as touch-sensing regions and/or touch-driving regions. Conductive lines connected to the common electrode blocks are placed under the common electrode blocks and the pixel electrodes of the pixels, and they are routed across the active area, directly toward an inactive area where drive-integrated circuits are located. The conductive lines are positioned under one or more planarization layers, and are connected to the corresponding common electrode blocks via one or more contact holes.
Abstract:
A display of an electric device includes a plurality of separated transparent electrode blocks, which are configured to provide one or more of supplemental features such as touch recognition. Signal paths between the transparent electrode blocks and the driver for the supplemental feature are implemented with a plurality of conductive lines placed under positioned under one or more planarization layers. The conductive lines implementing the signal paths are routed across the display area, directly toward a non-display area where drive-integrated circuits are located.