Abstract:
A method for a user equipment (UE) in a wireless communication system, includes receiving channel state information reference signal (CSI-RS) for at one antenna port from a network in a subframe, wherein the CSI-RS is mapped to at least one pair of resource elements (REs) per physical resource block (PRB) pair in consecutive orthogonal frequency division multiplexing (OFDM) symbols in the subframe, and wherein the subframe includes two slots, and each slot includes six OFDM symbols based on an extended cyclic prefix (CP).
Abstract:
A method for monitoring a downlink control channel, is performed by a user equipment (UE) configured with multiple carriers and includes receiving information on carrier index, determining a plurality of UE-specific search spaces for monitoring the downlink control channel, and monitoring the downlink control channel within the plurality of UE-specific search spaces, wherein location of each of the plurality of the UE-specific search spaces is determined based on the carrier index.
Abstract:
A method for receiving data by a relay station (RS) in a wireless communication system includes: receiving radio resource allocation information via an R-PDCCH (R-Physical Downlink Control Channel); and receiving data from a base station (BS) via an R-PDSCH (R-Physical Downlink Shared Channel) indicated by the radio resource allocation information, wherein the radio resource allocation information includes information regarding an allocation of resource blocks in a frequency domain and information regarding an allocation of OFDM symbols in a time domain. Since the radio resource allocation information providing information regarding a time relationship between a control channel transmitted by the BS to a UE and a control channel transmitted by the RS to a UE connected to the RS is provided, the RS can reliably receive a signal transmitted from the BS in a backhaul link between the BS and the RS in a wireless communication system including the RS.
Abstract:
A method for monitoring a downlink control channel, the method performed by a user equipment (UE) configured with multiple carriers includes determining whether to monitor the downlink control channel within either one UE-specific search space or a plurality of UE-specific search spaces, and monitoring the downlink control channel within the plurality of UE-specific search spaces if carrier index is configured, wherein each of the plurality of the UE-specific search spaces is determined based on the carrier index.
Abstract:
A method for transmitting control information via a PUCCH in a wireless communication system and an apparatus for performing the method are provided, the method including joint-coding a plurality of pieces of control information to obtain a single code word; obtaining a first modulated symbol sequence from the single code word; obtaining a plurality of second modulated symbol sequences corresponding to each slot in the PUCCH from the first modulated symbol sequence; cyclically shifting the plurality of second modulated symbol sequences in a time domain to obtain a plurality of third modulated symbol sequences; performing a Discrete Fourier Transform (DFT) precoding process on the plurality of third modulated symbol sequences to obtain a plurality of complex symbol sequences in a frequency domain; and transmitting the plurality of complex symbol sequences via the PUCCH.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method for transmitting acknowledgement/negative ACK (ACK/NACK) in a wireless communication system which supports carrier aggregation, and to an apparatus for the method. A method in which a terminal transmits ACK/NACK in a wireless communication system that supports carrier aggregation comprises the following steps: receiving a physical downlink control channel (PDCCH); receiving a physical downlink shared channel (PDSCH) indicated by the PDCCH; and transmitting ACK/NACK for the PDSCH via a physical uplink control channel (PUCCH). A PUCCH format for transmitting ACK/NACK is selected by taking the number of aggregated carriers into account.
Abstract:
A method for receiving data by a relay station (RS) in a wireless communication system includes: receiving radio resource allocation information via an R-PDCCH (R-Physical Downlink Control Channel); and receiving data from a base station (BS) via an R-PDSCH (R-Physical Downlink Shared Channel) indicated by the radio resource allocation information, wherein the radio resource allocation information includes information regarding an allocation of resource blocks in a frequency domain and information regarding an allocation of OFDM symbols in a time domain. Since the radio resource allocation information providing information regarding a time relationship between a control channel transmitted by the BS to a UE and a control channel transmitted by the RS to a UE connected to the RS is provided, the RS can reliably receive a signal transmitted from the BS in a backhaul link between the BS and the RS in a wireless communication system including the RS.
Abstract:
According to one embodiment, a method for transmitting, by a user equipment (UE), information in a wireless communication system includes: determining a first information sequence based on a first cyclically shifted base sequence and a first orthogonal sequence by using a first physical uplink control channel (PUCCH) resource for a first antenna, wherein the first PUCCH resource is obtained based on a channel control element (CCE) index related to a physical downlink control channel (PDCCH) and a parameter configured by a higher layer; determining a second information sequence based on a second cyclically shifted base sequence and a second orthogonal sequence by using a second PUCCH resource for a second antenna, wherein the second PUCCH resource is obtained by adding an offset to the first PUCCH resource; transmitting the first information sequence via the first antenna; and transmitting the second information sequence via the second antenna.
Abstract:
A method for transmitting, by a base station, signals in a communication system. The base station transmits, to a mobile station via a primary carrier band of the mobile station, carrier aggregation configuration information informing the mobile station of a subsidiary carrier band for the mobile station. The base station receives, from the mobile station, control information for the subsidiary carrier band via the primary carrier band. The carrier aggregation configuration information includes a physical identification of a frequency allocation band used as the subsidiary carrier band and a logical identification assigned to the subsidiary carrier band for the mobile station. The physical identification includes one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system. The logical identification includes a logical index assigned to the subsidiary carrier band identifying the subsidiary carrier band from among a plurality of frequency allocation bands.
Abstract:
A method for transmitting a sounding reference signal (SRS) at a user equipment in a time division duplex (TDD) communication system; and the user equipment are discussed. The method includes receiving downlink control information (DCI) including a request of the SRS transmission. The DCI includes information for receiving downlink data using multiple antennas by the user equipment. The method further includes transmitting the SRS to the base station according to the request of the SRS transmission.