Abstract:
An active matrix organic electroluminescent display device includes a substrate, a gate line disposed on the substrate, a data line disposed on the substrate crossing the gate line to form a pixel region, a first switching thin film transistor disposed on the substrate and electrically connected to the gate line and the data line, a first driving thin film transistor disposed on the substrate and electrically connected to the first switching thin film transistor, a capacitor electrode formed on the substrate and electrically connected to the first switching thin film transistor, the capacitor electrode having first and second parts disposed in parallel to the data line, and a third part connecting a first end of the first part to a first end of the second part, a power line electrically connected to the first driving thin film transistor, the power line having first, second, and third portions overlapping the capacitor electrode to form a storage capacitor, a pixel electrode disposed within the pixel region and electrically connected to the first driving thin film transistor, an organic emissive layer disposed on the pixel electrode, and a partition wall disposed between adjacent organic layers to overlap the data line and the first and second parts of the capacitor electrode.
Abstract:
A method of fabricating an organic electroluminescence display device includes the steps of forming a first electrode; forming an emissive layer on the first electrode using a solvent and a polymer, the solvent having a surface tension less than 30 dyne/cm and a boiling point greater than 200 degrees centigrade; and forming a second electrode on the emissive layer.
Abstract:
A structure for an IPS LCD device, includes a plurality of common electrodes disposed over a pixel region of a substrate, a common line coupled with the plurality of common electrodes, a plurality of pixel electrodes on the pixel region, the plurality of pixel electrodes and common electrodes being arranged in an alternating manner with a predeterminned interval between adjacent common and pixel electrodes, and a first pixel connecting line coupled with the plurality of pixel electrodes and overlapping the common line, wherein a first corner portion where one of the pixel electrodes meets the first pixel connecting line is slanted with respect to that pixel electrode.