Abstract:
An active matrix organic electro luminescence device panel includes: a first substrate having a plurality of thin film transistors and a plurality of first electrodes that define regions arrayed in matrix that each contain a pixel, wherein each pixel has an organic electro luminescence layer and a second electrode, which are sequentially formed on one of the first electrodes; a second substrate being positioned over the second electrode to prevent the organic electro luminescence layer from being degraded due to oxygen and moisture; and a sealant that adheres the first and second substrates to each other, wherein a plurality of wires and a driver are formed on the second substrate to provide a signal for driving the first electrodes.
Abstract:
A liquid crystal dispensing system includes a container for containing liquid crystal; a liquid crystal measuring sensor proximate the container; a discharge pump for pumping liquid crystal from the container, and a nozzle for dispensing liquid crystal discharged from the discharge pump onto a substrate. In an exemplary embodiment, the crystal dispensing system includes a control unit for controlling a discharge amount of liquid crystal discharged from the discharge pump and calculating and compensating a dispensing amount of liquid crystal based on an amount of measured liquid crystal in the container.
Abstract:
A liquid crystal display device includes a support main, a lamp housing, a printed circuit board (PCB), a top case and a cover bottom. The support main is a bottom portion of a liquid crystal display device module (LCM). The lamp housing is disposed at sides of the support main in a long side direction of the support main. The PCB is disposed on a back surface of the support main. The top case is a top portion of the LCM and has projection pieces from a side thereof. The cover bottom is disposed on an upper surface of the support main. The cover bottom has first extension pieces for electrical connection to the top case and second extension pieces projected to a lower surface of the support main for electrical connection to the printed circuit board, thereby making secure fastening and grounding.
Abstract:
A transflective liquid crystal display device includes a pixel region having reflective and transmissive portions. A first passivation layer having one or more protrusions in the reflective portion is disposed on a thin film transistor formed on a first substrate. A reflective layer disposed on the first passivation layer in the reflective portion is uneven, at least in part due to the protrusions. A second passivation layer and a pixel electrode are disposed on the first passivation layer. A color filter layer disposed on an inner surface of the second substrate has at least one through hole in the reflective portion. An overcoat layer disposed on the color filter layer has an open portion in the transmissive portion. A common electrode is disposed on the overcoat layer and a liquid crystal layer is disposed between the pixel electrode and the common electrode.
Abstract:
A method of forming a color filter layer includes forming a first sub-color filter on a substrate by placing a first mold having at least a first groove on the substrate and injecting a first color resin into the first groove, the substrate including first, second and third regions and the first groove corresponding to the first region; forming a second sub-color filter on the substrate by placing a second mold having at least a second groove on the substrate and injecting a second color resin into the second groove, the second groove corresponding to the first and second regions; and forming a third sub-color filter on the substrate by placing a third mold having at least a third groove on the substrate and injecting a third color resin into the third groove, the third groove corresponding to the first, second and third regions.
Abstract:
The present invention discloses an LCD panel and a method for fabricating the same. More specifically, the LCD panel includes first and second substrates, a photo-hardening sealant between the first and second substrates, a plurality of metal lines on the first substrate, wherein the metal lines are formed of a transparent conductive film at least at portions where the metal lines cross one another, and a liquid crystal layer between the first and second substrates. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
A flat-type fluorescent lamp device includes a first substrate, a plurality of first and second electrodes arranged on the first substrate at fixed intervals, a first fluorescent layer on an entire surface of the first substrate including the first and second electrodes, a second substrate having a plurality of projection portions for maintaining a uniform gap between the first and second substrates, and a second fluorescent layer on the second substrate except at regions, of the projection portions that contact the first substrate.
Abstract:
Sequential lateral solidification (SLS) crystallization of amorphous silicon uses a mask having light transmitting portions. A method of crystallizing an amorphous silicon film using the mask includes forming an amorphous silicon layer over a substrate; forming a metal layer on the amorphous silicon layer; patterning the metal layer to expose a portion of the amorphous silicon layer in a TFT area where a thin film transistor is formed; disposing the mask over the portion of the amorphous silicon layer exposed by the metal layer; and irradiating the portion of the amorphous silicon layer exposed by the metal layer using a laser beam that passes through the light transmitting portions of the mask such that the portion of the amorphous silicon layer is crystallized and laterally growing grains are formed in grain regions.
Abstract:
A method and apparatus of driving a liquid crystal display device is disclosed in the present invention. The liquid crystal display device includes a plurality of data lines, a plurality of gate lines crossing the data lines, a plurality of first liquid crystal cells on a first side of the data lines, a plurality of second liquid crystal cells on a second side of the data lines, a first switching part in each of the first liquid crystal cells and controlled by the ith gate line and the (inull2)th gate line (wherein i is a natural number), and a second switching part in each of the second liquid crystal cells and controlled by the ith gate line.
Abstract:
An LCD repair method repairs gate opens in a gate line where the gate line intersects with a data line or where the gate open exists at a position where it is not overlapped by a single pixel electrode. The method includes connecting a pixel electrode overlapping a portion of the opened gate line to the gate line, and forming a metal pattern to electrically connect two adjacent pixel electrodes.