Abstract:
Systems and method for identifying somatic mutations can receive first and second sequence information, determine if a variant present in the first sequencing information is also present in the second sequence information, and identify variants present in the first sequence information are somatic mutations when the variant is either not present in the second sequence information or the presence of the variant in the second sequence information is likely due to a sequencing error.
Abstract:
Systems and method for identifying variants associated with a genetic disease can include obtaining calls for a plurality of individuals for a list of variant positions. The calls can be compared to identify variants that are found in affected individuals and absent in non-affected individuals. Such variants can include loss of heterozygosity, trans-phased compound heterozygotes, increased frequency mitochondrial variants, homozygous recessive variants, de novo variants, sex-linked variants, and combinations thereof.
Abstract:
Disclosed are systems and methods for resequencing using color calls. A DNA sample is encoded and sequenced according to a multi-base code producing a string of read color calls for a fragment of the sample. A reference sequence is obtained. The string of read color calls is mapped to the reference sequence. A base sequence is extracted from the reference sequence. The base sequence is encoded as a string of reference color codes according to the multi-base code. The string of read color calls is aligned with the string of reference color codes and mismatches in the alignment are detected. One or more mismatches of the string of read color calls are annotated as inconsistent. The one or more inconsistent mismatches of the string of read color calls are corrected. The string of corrected read color calls is decoded to bases producing a read sequence.
Abstract:
Systems and method for annotating variants within a genome can call variants from reads or receive called variants directly and associate the called variants with functional annotations and interpretive annotations. A summary report of the called variants, the associated functional annotations, and the associated interpretive annotations can be generated.
Abstract:
Systems and method for annotating variants within a genome can call variants from reads or receive called variants directly and associate the called variants with functional annotations and interpretive annotations. A summary report of the called variants, the associated functional annotations, and the associated interpretive annotations can be generated.
Abstract:
Systems and method for identifying somatic mutations can receive first ans second sequence information, determine if a variant present in the first sequencing information is also present in the second sequence information, and identify variants present in the first sequence information are somatic mutations when the variant is either not present in the second sequence information or the presence of the variant in the second sequence information is likely due to a sequencing error.
Abstract:
Systems and method for annotating variants within a genome can call variants from reads or receive called variants directly and associate the called variants with functional annotations and interpretive annotations. A summary report of the called variants, the associated functional annotations, and the associated interpretive annotations can be generated.