摘要:
Mechanisms for providing a cluster-wide system clock in a multi-tiered full graph (MTFG) interconnect architecture are provided. Heartbeat signals transmitted by each of the processor chips in the computing cluster are synchronized. Internal system clock signals are generated in each of the processor chips based on the synchronized heartbeat signals. As a result, the internal system clock signals of each of the processor chips are synchronized since the heartbeat signals, that are the basis for the internal system clock signals, are synchronized. Mechanisms are provided for performing such synchronization using direct couplings of processor chips within the same processor book, different processor books in the same supernode, and different processor books in different supernodes of the MTFG interconnect architecture.
摘要:
A system for providing a cluster-wide system clock in a multi-tiered full graph (MTFG) interconnect architecture are provided. Heartbeat signals transmitted by each of the processor chips in the computing cluster are synchronized. Internal system clock signals are generated in each of the processor chips based on the synchronized heartbeat signals. As a result, the internal system clock signals of each of the processor chips are synchronized since the heartbeat signals, that are the basis for the internal system clock signals, are synchronized. Mechanisms are provided for performing such synchronization using direct couplings of processor chips within the same processor book, different processor books in the same supernode, and different processor books in different supernodes of the MTFG interconnect architecture.
摘要:
A method for providing a cluster-wide system clock in a multi-tiered full graph (MTFG) interconnect architecture are provided. Heartbeat signals transmitted by each of the processor chips in the computing cluster are synchronized. Internal system clock signals are generated in each of the processor chips based on the synchronized heartbeat signals. As a result, the internal system clock signals of each of the processor chips are synchronized since the heartbeat signals, that are the basis for the internal system clock signals, are synchronized. Mechanisms are provided for performing such synchronization using direct couplings of processor chips within the same processor book, different processor books in the same supernode, and different processor books in different supernodes of the MTFG interconnect architecture.
摘要:
Mechanisms for performing dynamic request routing based on broadcast depth queue information are provided. Each processor chip in the system may use a synchronized heartbeat signal it generates to provide queue depth information to each of the other processor chips in the system. The queue depth information identifies a number of requests or amount of data in each of the queues of a processor chip that originated the heartbeat signal. The queue depth information from each of the processor chips in the system may be used by the processor chips in determining optimal routing paths for data from a source processor chip to a destination processor chip. As a result, the congestion of data for processing at each of the processor chips along each possible routing path may be taken into account when selecting to which processor chip to forward data.
摘要:
A mechanism for performing dynamic request routing based on broadcast source request information is provided. Each processor chip in the system may use a synchronized heartbeat signal it generates to provide source request information to each of the other processor chips in the system. The source request information identifies the number of active source requests sent by the processor chip that originated the heartbeat signal. The source request information from each of the processor chips in the system may be used by the processor chips in determining optimal routing paths for data from a source processor chip to a destination processor chip. As a result, the congestion of data for processing at each of the processor chips along each possible routing path may be taken into account when selecting to which processor chip to forward data.
摘要:
A system and method for performing dynamic request routing based on broadcast source request information are provided. Each processor chip in the system may use a synchronized heartbeat signal it generates to provide source request information to each of the other processor chips in the system. The source request information identifies the number of active source requests sent by the processor chip that originated the heartbeat signal. The source request information from each of the processor chips in the system may be used by the processor chips in determining optimal routing paths for data from a source processor chip to a destination processor chip. As a result, the congestion of data for processing at each of the processor chips along each possible routing path may be taken into account when selecting to which processor chip to forward data.
摘要:
A system and method for performing dynamic request routing based on broadcast depth queue information are provided. Each processor chip in the system may use a synchronized heartbeat signal it generates to provide queue depth information to each of the other processor chips in the system. The queue depth information identifies a number of requests or amount of data in each of the queues of a processor chip that originated the heartbeat signal. The queue depth information from each of the processor chips in the system may be used by the processor chips in determining optimal routing paths for data from a source processor chip to a destination processor chip. As a result, the congestion of data for processing at each of the processor chips along each possible routing path may be taken into account when selecting to which processor chip to forward data.
摘要:
A system for providing a cluster-wide system clock in a multi-tiered full graph (MTFG) interconnect architecture are provided. Heartbeat signals transmitted by each of the processor chips in the computing cluster are synchronized. Internal system clock signals are generated in each of the processor chips based on the synchronized heartbeat signals. As a result, the internal system clock signals of each of the processor chips are synchronized since the heartbeat signals, that are the basis for the internal system clock signals, are synchronized. Mechanisms are provided for performing such synchronization using direct couplings of processor chips within the same processor book, different processor books in the same supernode, and different processor books in different supernodes of the MTFG interconnect architecture.
摘要:
A mechanism is provided for collective acceleration unit tree flow control forms a logical tree (sub-network) among those processors and transfers “collective” packets on this tree. The system supports many collective trees, and each collective acceleration unit (CAU) includes resources to support a subset of the trees. Each CAU has limited buffer space, and the connection between two CAUs is not completely reliable. Therefore, to address the challenge of collective packets traversing on the tree without colliding with each other for buffer space and guaranteeing the end-to-end packet delivery, each CAU in the system effectively flow controls the packets, detects packet loss, and retransmits lost packets.
摘要:
A mechanism is provided for collective acceleration unit tree flow control forms a logical tree (sub-network) among those processors and transfers “collective” packets on this tree. The system supports many collective trees, and each collective acceleration unit (CAU) includes resources to support a subset of the trees. Each CAU has limited buffer space, and the connection between two CAUs is not completely reliable. Therefore, to address the challenge of collective packets traversing on the tree without colliding with each other for buffer space and guaranteeing the end-to-end packet delivery, each CAU in the system effectively flow controls the packets, detects packet loss, and retransmits lost packets.