摘要:
Disclosed is an image color management system and method for controlling an image output device. The method for controlling the image output device comprises generating an image output device profile LUT (look-up-table) characterizing the color profile of the image output device for a plurality of drift states associated with the image output device; generating a set of basis vectors representing the LUT; storing the set of basis vectors in an image output device controller; and generating an image output device active profile associated with a current drift state of the image output device to convert image color data for display or printing by the image output device, wherein the image output device active profile is generated from the set of basis vectors.
摘要:
What is disclosed is a novel system and method for determining the number of persons in an IR image obtained using an IR imaging system. The present method separates a human from the surrounding background via a set of particularly formed intensity ratios. Quantities derived from these ratios and threshold values are used to selectively classify whether a pixel in the IR image is from a human or from a non-human. Based upon the classification of the various pixels in the IR image, the number of persons is determined. Various embodiments are disclosed.
摘要:
Disclosed herein are optimal or near optimal algorithms implemented as software tools that will allow the user/machine to identify optimal media out of the job set automatically. There are at least two main process steps to the exemplary embodiment. The first step involves the off-line characterization of the printing/image rendering system that will be used to extract the principal basis vectors from the experimental data. The second step involves the run-time mode, in which the pre-characterized basis vectors are used in conjunction with an optimal algorithm that will identify the media for re-calibration/re-characterization from the group of media set that the customer is interested to print. The optimal algorithm performs the combinatorial search every time the customer wishes to select the media. Once the optimal media is selected, the customer or the machine can print color patches (which are also optimal set) and execute the rest of the processing to reconstruct the best color management LUTs.
摘要:
Disclosed are a system and method are directed to efficient image based color calibration and improving color consistency performance, and more particularly to the use of continuous or dynamic calibration performed during printing and enabling adjustment on a page by page basis.
摘要:
Disclosed is an image color management system and method for controlling an image output device. The method for controlling the image output device comprises generating an image output device profile LUT (look-up-table) characterizing the color profile of the image output device for a plurality of drift states associated with the image output device; generating a set of augmented basis vectors representing the LUT, L*a*b* values and multiple GCR/UCRs; storing the set of basis vectors in an image output device controller; and generating an image output device active profile associated with a current drift state of the image output device to convert image color data for display or printing by the image output device, wherein the image output device active profile is generated from the set of basis vectors.
摘要翻译:公开了一种用于控制图像输出装置的图像颜色管理系统和方法。 用于控制图像输出装置的方法包括:生成表征与图像输出装置相关联的多个漂移状态的图像输出装置的颜色特征图像的图像输出装置简档LUT(查找表); 生成表示LUT,L * a * b *值和多个GCR / UCR的增强基向量集合; 将所述一组基矢量存储在图像输出装置控制器中; 以及生成与所述图像输出设备的当前漂移状态相关联的图像输出设备活动轮廓,以转换由图像输出设备显示或打印的图像颜色数据,其中从所述一组基矢量生成所述图像输出设备活动简档。
摘要:
What is disclosed is a novel system and method for determining the number of persons in an IR image obtained using an IR imaging system. The present method separates a human from the surrounding background via a set of particularly formed intensity ratios. Quantities derived from these ratios and threshold values are used to selectively classify whether a pixel in the IR image is from a human or from a non-human. Based upon the classification of the various pixels in the IR image, the number of persons is determined. Various embodiments are disclosed.
摘要:
Disclosed is an image color management system and method for controlling an image output device. The method for controlling the image output device comprises generating an image output device profile LUT (look-up-table) characterizing the color profile of the image output device for a plurality of drift states associated with the image output device; generating a set of basis vectors representing the LUT; storing the set of basis vectors in an image output device controller; and generating an image output device active profile associated with a current drift state of the image output device to convert image color data for display or printing by the image output device, wherein the image output device active profile is generated from the set of basis vectors.
摘要:
Linear transformations of L*a*b* color space are provided to minimize interpolation errors when performing multi-dimensional color space conversions involving lookup tables. Methods are provided for linear transformations (e.g., rotation and shear) to substantially fit the sampling grid to a given printer gamut.
摘要翻译:提供L * a * b *颜色空间的线性变换,以便在执行涉及查找表的多维颜色空间转换时,最小化插补误差。 提供了用于线性变换(例如旋转和剪切)以将采样网格基本拟合到给定的打印机色域的方法。
摘要:
A method and system for selecting an optimal set of S number of calibration patches for an image producing system. The method of selecting the S number of calibration patches includes acquiring a set of K number of basis eigen vectors and model parameters which represent the image producing system having G number of colors and computing the optimal set of S number of colors selected from the set of G number of colors. Each one of the computed set of S number of colors is used for one of the S number of calibration patches.
摘要:
The exemplary embodiment disclosed herein comprises several aspects of defining and using optimal color test patches for calibrating a printing system for various purposes (e.g., multi-media, gamut extension, drifting correction, etc.). One aspect is the creation and use of color patches where the color patches are selected optimally to result in minimum mean square error when those color patches are used to determine weights of a limited number of basis vectors that model the system (e.g., model the print engine response). A joint optimization technique is given as a method to select the optimal color test patches for calibration.