摘要:
A tunable Fabry-Perot filter (8, 118, 218, 318, 418) includes substrates (10, 12) with parallel generally planar facing principal surfaces (14, 16) including spaced apart facing reflective surface regions (20, 22) that are at least partially reflective over a wavelength range and define an optical gap (Gopt) therebetween. At least one substrate of the pair of substrates is light transmissive over the selected wavelength range to enable optical coupling with the optical gap. Electrodes (24, 26) are disposed on the facing principal surfaces of the substrates. The electrodes on the facing principal surfaces of the substrates are define an electrode gap therebetween such that electrical biasing of the electrodes simultaneously modifies the optical and electrode gaps.
摘要:
A spectral filter includes a two-dimensional array of Fabry-Perot cavity structures, a controller, and a sampling circuit used to switch the Fabry-Perot cavity. The filter receives an incoming image, the sampling circuit switches the cavity to generate a filter image, and the filtered image is detected by the photodetectors to convert a filtered image into digital data. The controller coordinates all the image captures functions of the spectral filter.
摘要:
An apparatus may include an illuminator, a controller, a display panel, a modulator, and a plurality of Fabry-Perot cavities. The plurality of Fabry-Perot cavities generated an image from light provided by the illuminator, each pixel of the image corresponding to a respective one of the plurality of Fabry-Perot cavities. The controller controls the modulator to provide image modulation data to the plurality of Fabry-Perot cavities for generating the image, the modulator providing color information to a first cavity of the plurality of Fabry-Perot cavities for setting a size of the first cavity to correspond to a color of a first pixel of the image, the modulator providing gray level information to the first cavity for time-division multiplexing to correspond to a gray level of the first pixel. The display panel display pixels of the generated image based on colors and gray levels of each pixel of the generated image.
摘要:
A tunable Fabry-Perot filter is supported on a substrate which may be transparent. A transparent support body is supported by the substrate and carries a first reflector. A second reflector is supported on the substrate. The first and second reflectors define a gap therebetween. The size of the gap is adjustable by flexing of the support body to modulate a wavelength of light output by the filter.
摘要:
A projection system includes a display apparatus comprising a plurality of tunable Fabry-Perot filters, each of the filters being configured for shifting between a state in which the filter transmits radiation in a bandwidth in the visible range of the electromagnetic spectrum and a state in which the filter transmits radiation in a bandwidth outside the visible range of the electromagnetic spectrum. An illuminator provides light to the plurality of Fabry-Perot filters. A control system receives image data and controls the display apparatus to project an image onto an associated display surface. The control system includes a modulator which provides wavelength modulation signals to the plurality of Fabry-Perot filters to modulate a color of pixels in the image and causes selected ones of the Fabry-Perot filters to shift into the bandwidth outside the visible range to modulate the brightness of pixels in the image.
摘要:
A optical apparatus may include a plurality of Fabry-Perot cavities and a controller. The plurality of Fabry-Perot cavities receives an incoming image. The controller controls a group of adjacent Fabry-Perot cavities of the plurality of Fabry-Perot cavities to sample spectral information from a pixel of the incoming image. The group may be designated to the pixel. Sizes of the cavities within the group may differ from one another. The sizes of the cavities within the group may be fixed during the spectral information synthesis operation.
摘要:
An improved waveguide shuttle optical switch design which provides the function of a variable optical attenuator (VOA). A small degree of intentional misalignment of the waveguide will create different levels of optical attenuation. By finely controlling the misalignment of a selected switched position, a single device may be realized that will provide the functions of both switching and attenuating or just attenuation alone. The optical MEMS device utilizes a latching mechanism in association with a thermal drive actuator for aligning a waveguide shuttle platform. The integration of the switching function and the VOA function reduce the optical loss which is otherwise unavoidable when the inevitable alternative of a separate switch and a separate VOA must necessarily be employed. The resultant improved device can also be applied for correcting the difference in optical intensity created by the manufacturing tolerances inherent in the fabrication of array waveguide gratings.
摘要:
A waveguide structure has a base having a base height (h) above a substrate and a rectangular waveguide having a waveguide height (H) above the substrate and a waveguide width (W) between opposing sides of the waveguide.
摘要:
An improved cantilever beam optical switch design which provides the function of a variable optical attenuator (VOA). A small degree of intentional misalignment of the waveguide will create different levels of optical attenuation. By finely controlling the misalignment of a selected switched position, a single device may be realized that will provide the functions of both switching and attenuating or just attenuation alone. The optical MEMS device utilizes a latching mechanism in association with a thermal drive actuator for aligning a cantilever beam platform. The integration of the switching function and the VOA function reduce the optical loss which is otherwise unavoidable when the inevitable alterative of a separate switch and a separate VOA must necessarily be employed. The resultant improved device can also be applied for correcting the difference in optical intensity created by the manufacturing tolerances inherent in the fabrication of array waveguide gratings.
摘要:
An optical switch for routing signals includes a latch receiver connected to a waveguide that routes the signals and an actuator that includes an upper plate, a lower plate and a latch connected to the lower plate, the lower plate of the actuator moving vertically when power is applied to the lower plate, causing the latch to move vertically and engage the latch receiver. A latching system includes a switch that includes a latch formed to include an extension on one end of the latch, the latch being driven by power, a latch receiver that is formed to receive the latch and a controller that controls the extension of the latch to engage the latch receiver when the power is applied to the latch, and controls the extension of the latch to lock in place against the latch receiver when the power is removed from the latch.