SIMULATING HYDRAULIC FRACTURING GEOMETRY PROPAGATION USING A DIFFERENTIAL STRESS AND PATTERN-BASED MODEL

    公开(公告)号:US20210256183A1

    公开(公告)日:2021-08-19

    申请号:US16652619

    申请日:2019-05-09

    Abstract: The disclosure presents a technique to generate a fracture model using a differential stress map and model inputs. The technique simulates the fracture model using fracture fronts, initiated at perforations of a perforation stage of a hydraulic fracturing (HF) wellbore. Each fracture front is evaluated using a propagation step of a fracture model process. Using the relative differential stress states, a fracture pattern is composited to the fracture model. At each propagation step, the total energy available from the simulated fluid being pumped into the wellbore location is reduced by the amount necessary to generate the computed fractures. Once the remaining energy is reduced to a level where no further fractures can be created, or if a map boundary is encountered, the fracture model process terminates. The generated fracture model can be communicated to update HF job plans, wellbore placements, and other uses of the fracture model.

    PLANNING A WELL CONFIGURATION USING GEOMECHANICAL PARAMETERS

    公开(公告)号:US20210222518A1

    公开(公告)日:2021-07-22

    申请号:US16630541

    申请日:2019-02-13

    Abstract: Geomechanical parameters can be used to optimize a well configuration that includes one or more projected wells having locations and geometries. Formation data and regional stress information of a formation can be used to determine a local stress variation of the formation. A quality index can be generated by combining petrophysical properties with the local stress variation. Hydrocarbon recovery flow simulations can be generated by generating well configuration models based on the quality index, generating reservoir geomechanical model that includes hydraulic fracture propagation characteristics, determining new hydraulic fractures by simulating propagation through the reservoir geomechanical model and using geomechanical rules, and determining a projected hydrocarbon recovery rate by simulating flow with the new hydraulic fractures. A well placement plan can be selected using the projected hydrocarbon recovery rates. The well placement plan can be output to be used to plan one or more wellbores.

Patent Agency Ranking