Abstract:
A method includes selecting a model for a simulation of hydrocarbon recovery from a reservoir having a plurality of fractures during injection of an injected gas into the plurality of fractures. Selecting the model includes determining a flux ratio of a convection rate to a diffusion rate for the reservoir, determining whether the flux ratio is less than a threshold, and in response to the flux ratio being less than the threshold, selecting the model that includes diffusion. Selecting the model includes performing the simulation of the hydrocarbon recovery from the reservoir based on the model.
Abstract:
A method includes selecting a model for a simulation of hydrocarbon recovery from a reservoir having a plurality of fractures during injection of an injected gas into the plurality of fractures. Selecting the model includes determining a flux ratio of a convection rate to a diffusion rate for the reservoir, determining whether the flux ratio is less than a threshold, and in response to the flux ratio being less than the threshold, selecting the model that includes diffusion. Selecting the model includes performing the simulation of the hydrocarbon recovery from the reservoir based on the model.
Abstract:
In some embodiments, a method for locally lumped equation of state fluid characterization can include determining a set of components for the material balance calculations for a plurality of grid blocks of a reservoir. The plurality of grid blocks can experience different recovery methods between them. Lumping schemes can be determined for the plurality of grid blocks. Phase behavior calculations can be performed on the plurality of grid blocks, wherein different lumping schemes can be used across the plurality of grid blocks.
Abstract:
In some embodiments, a method for locally lumped equation of state fluid characterization can include determining a set of components for the material balance calculations for a plurality of grid blocks of a reservoir. The plurality of grid blocks can experience different recovery methods between them. Lumping schemes can be determined for the plurality of grid blocks. Phase behavior calculations can be performed on the plurality of grid blocks, wherein different lumping schemes can be used across the plurality of grid blocks.
Abstract:
In some embodiments, a system, as well as a method and an article, may operate to generate map values for a plurality of parameters corresponding to respective grid blocks of a reservoir, wherein the values have been previously generated based on an initial simulation result from a model of the reservoir; to generate a sector surrogate model that includes a subset of grid blocks of the reservoir based on a criterion for identifying grid blocks that negatively affect simulation of the reservoir; to provide data inputs to execute a simulation of the reservoir using the sector surrogate model; and to generate revised data inputs, based on results of the simulation of the reservoir using the sector surrogate model, to use in a subsequent simulation using the model of the reservoir. Additional apparatus, systems, and methods are disclosed.
Abstract:
A reservoir simulator system models the effect of proppant damage on reservoir production through calculation of a fracture closure stress versus fracture permeability relationship, which is mathematically transformed into a pore pressure versus fracture permeability relationship. Based upon the pore pressure relationship, the system models reservoir production while taking into account the permeability reduction in the fractures brought about due to proppant damage.
Abstract:
Systems and methods for determining operating settings of a fluid production system with a gathering network and a plurality of reservoirs, at least some of which include a method that includes lumping common pseudo-components into reservoir pseudo-components associated with each of the reservoirs. Each common pseudo-component is associated with the gathering network and maps to one reservoir pseudo-component of each of the reservoirs. The method further includes performing at least part of a fully-coupled simulation of the gathering network and the reservoirs using the common pseudo-components to obtain one or more operating settings that meet one or more constraints of the production system, and presenting to a user the operating settings.
Abstract:
Systems and methods for determining operating settings of a fluid production system with a gathering network and a plurality of reservoirs, at least some of which include a method that includes lumping common pseudo-components into reservoir pseudo-components associated with each of the reservoirs. Each common pseudo-component is associated with the gathering network and maps to one reservoir pseudo-component of each of the reservoirs. The method further includes performing at least part of a fully-coupled simulation of the gathering network and the reservoirs using the common pseudo-components to obtain one or more operating settings that meet one or more constraints of the production system, and presenting to a user the operating settings.
Abstract:
A method includes creating a diffusion model for a simulation of hydrocarbon recovery from a reservoir having a plurality of fractures during injection of an injected gas into the plurality of fractures, wherein the reservoir is partitioned into a plurality of grid cells in the diffusion model. Creating the diffusion model for a grid cell of the plurality of grid cells comprises, determining a flux ratio of a convective flux to an estimated diffusive flux for the grid cell, determining whether the flux ratio is less than a threshold, and in response to determining that the flux ratio is less than the threshold, determining a full diffusive flux for the grid cell for inclusion in the diffusion model. The method also includes performing the simulation of the hydrocarbon recovery from the reservoir based on the diffusion model.
Abstract:
A reservoir simulator system models the effect of proppant damage on reservoir production through calculation of a fracture closure stress versus fracture permeability relationship, which is mathematically transformed into a pore pressure versus fracture permeability relationship. Based upon the pore pressure relationship, the system models reservoir production while taking into account the permeability reduction in the fractures brought about due to proppant damage.